COMMON FIXED POINTS OF PRESIC OPERATORS VIA SIMULATION FUNCTIONS

被引:0
|
作者
Alecsa, Cristian Daniel [1 ,2 ]
机构
[1] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
[2] Romanian Acad, Tiberiu Popoviciu Inst Numer Anal, Cluj Napoca, Romania
关键词
Fixed point; common fixed point; Presic operator; simulation function; Boyd-Wong operator; ordered metric space;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the concept of simulation function, we present existence and uniqueness results for coincidence and common fixed points related to some Presic type operators in the framework of partially ordered metric spaces. Then, some corollaries unifying several existing theorems in the fixed point literature are presented and several examples are given.
引用
收藏
页码:363 / 377
页数:15
相关论文
共 50 条
  • [1] Common fixed points for almost Presic type operators
    Pacurar, Madalina
    CARPATHIAN JOURNAL OF MATHEMATICS, 2012, 28 (01) : 117 - 126
  • [2] α-admissible Presic type operators and fixed points
    Shukla, Satish
    Shahzad, Naseer
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2016, 21 (03): : 424 - 436
  • [3] FIXED POINTS OF PRESIC-CIRIC TYPE FUZZY OPERATORS
    Shukla, Satish
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019
  • [4] Asymptotic stability of equilibria for difference equations via fixed points of enriched Presic operators
    Pacurar, Madalina
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [5] EXISTENCE OF FIXED POINTS FOR NEW PRESIC TYPE MULTIVALUED OPERATORS
    Ali, Muhammad Usman
    Kamran, Tayyab
    Karapinar, Erdal
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (11) : 2047 - 2057
  • [6] Iterative approximation of fixed points of Presic operators on partial metric spaces
    Ilic, Dejan
    Abbas, Mujahid
    Nazir, Talat
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (14-15) : 1634 - 1646
  • [7] ITERATIVE APPROXIMATION OF FIXED POINTS FOR PRESIC TYPE F-CONTRACTION OPERATORS
    Abbas, M.
    Berzig, M.
    Nazir, T.
    Karapinar, E.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (02): : 147 - 160
  • [8] Approximating common fixed points of Presic-Kannan type operators by a multi-step iterative method
    Pacurar, Madalina
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (01): : 153 - 168
  • [9] Fixed Points for (α, β)-Admissible Mappings via Simulation Functions
    Dewangan, Archana
    Dubey, Anil Kumar
    Pandey, M. D.
    Dubey, R. P.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2021, 12 (04): : 1101 - 1111
  • [10] FIXED POINTS OF ALMOST PRESIC OPERATORS BY A k-STEP ITERATIVE METHOD
    Pacurar, Madalina
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2011, 57 : 199 - 210