FIXED POINTS OF PRESIC-CIRIC TYPE FUZZY OPERATORS

被引:4
|
作者
Shukla, Satish [1 ]
机构
[1] Shri Vaishnav Inst Technol & Sci, Dept Appl Math, Sanwer Rd, Indore 453331, Madhya Pradesh, India
来源
关键词
Fuzzy mapping; Presic-Ciric type fuzzy operator; Fixed point; CONTRACTION; MAPPINGS; THEOREMS;
D O I
10.23952/jnfa.2019.35
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a Presic-Ciric type fuzzy mapping in product spaces. A fixed point result for the mapping in complete metric spaces is obtained. Our result extends and generalizes some known results of the literature for fuzzy mappings. An example is given to illustrate the main result of this paper.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] α-admissible Presic type operators and fixed points
    Shukla, Satish
    Shahzad, Naseer
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2016, 21 (03): : 424 - 436
  • [2] Maia type fixed point theorems for Ciric-Presic operators
    Balazs, Margareta-Eliza
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2018, 10 (01) : 18 - 31
  • [3] Common fixed points for almost Presic type operators
    Pacurar, Madalina
    CARPATHIAN JOURNAL OF MATHEMATICS, 2012, 28 (01) : 117 - 126
  • [4] FIXED POINTS FOR MULTIVALUED CIRIC-TYPE OPERATORS
    Petrusel, Gabriela
    FIXED POINT THEORY, 2008, 9 (01): : 227 - 231
  • [5] EXISTENCE OF FIXED POINTS FOR NEW PRESIC TYPE MULTIVALUED OPERATORS
    Ali, Muhammad Usman
    Kamran, Tayyab
    Karapinar, Erdal
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (11) : 2047 - 2057
  • [6] Fuzzy-Presic-Ciric Operators and Applications to Certain Nonlinear Differential Equations
    Shukla, Satish
    Gopal, Dhananjay
    Rodriguez-Lopez, Rosana
    MATHEMATICAL MODELLING AND ANALYSIS, 2016, 21 (06) : 811 - 835
  • [7] ITERATIVE APPROXIMATION OF FIXED POINTS FOR PRESIC TYPE F-CONTRACTION OPERATORS
    Abbas, M.
    Berzig, M.
    Nazir, T.
    Karapinar, E.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (02): : 147 - 160
  • [8] SET-VALUED PRESIC-CIRIC TYPE CONTRACTION IN 0-COMPLETE PARTIAL METRIC SPACES
    Shukla, Satish
    MATEMATICKI VESNIK, 2014, 66 (02): : 178 - 189
  • [9] On Ciric-Presic Operators in Metric Spaces
    Boonsri, Narongsuk
    Saejung, Satit
    Sitthikul, Kittipong
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [10] A relation-theoretic set-valued version of Presic-Ciric theorem and applications
    Shukla, Satish
    Rai, Shweta
    Shukla, Rahul
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)