Constant and variable amplitude cyclic plasticity in 316L stainless steel

被引:1
|
作者
van Eeten, Paul [1 ]
Nilsson, Fred [1 ]
机构
[1] Royal Inst Technol KTH, SE-10044 Stockholm, Sweden
关键词
plasticity; cyclic; isotropic; kinematic; hardening; variable amplitude; 316L;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
in this paper, cyclic plastic behavior of 316L stainless steel has been investigated through uniaxial experiments. An clasto-plastic material model is proposed that builds on a Chaboche based model that is readily available in commercial FE-software. The model has been calibrated for 316L through cyclic symmetric strain experiments for a strain range up to 4 %. Experiments show that strain loading history and strain range have a significant impact on the behavior of the material. The plasticity model available in FE-codes only depends on the maximum equivalent plastic strain though. More complex material models require a significant number of parameters to be calibrated and require extensive experiments to provide the required calibration data. For most applications this calibration effort is too extensive. To include both phenomena of strain history and strain range dependency, at least in a basic manner, a user subroutine was created that aids the material model in describing these dependencies.
引用
收藏
页码:298 / 311
页数:14
相关论文
共 50 条
  • [41] Precipitation stages in a 316L austenitic stainless steel
    Wasnik, DN
    Dey, GK
    Kain, V
    Samajdar, I
    SCRIPTA MATERIALIA, 2003, 49 (02) : 135 - 141
  • [42] Reaction of 316L stainless steel with a galvanizing bath
    Ke Zhang
    Nai-Yong Tang
    Frank E. Goodwin
    Scott Sexton
    Journal of Materials Science, 2007, 42 : 9736 - 9745
  • [43] THE EFFECT OF PASSIVATION ON THE HAEMOCOMPATIBILITY OF 316L STAINLESS STEEL
    Shi Yongjuan
    Ren Yibin
    Zhang Bingchun
    Yang Ke
    ACTA METALLURGICA SINICA, 2011, 47 (12) : 1575 - 1580
  • [44] The mechanochemical behavior of type 316L stainless steel
    Gutman, EM
    Solovioff, G
    Eliezer, D
    CORROSION SCIENCE, 1996, 38 (07) : 1141 - 1145
  • [45] Embrittlement of 316L stainless steel in electropulsing treatment
    Zeng, Zhi
    He, Jing
    Xiang, Ziting
    Sun, Qingqing
    Wu, Yongbo
    Wang, Shuai
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (05): : 10669 - 10678
  • [46] The Research on the Corrosion Inhibitor for the 316L Stainless Steel
    Yang, Ruisong
    Li, Mingtian
    Jin, Yongzhong
    ADVANCED RESEARCH ON MATERIAL, ENERGY AND CONTROL ENGINEERING, 2013, 648 : 11 - 14
  • [47] The effect of cerium solutions on 316L stainless steel
    Askarian, M.
    Peikari, M.
    Javadpour, S.
    Masoum, S.
    Abolhasanzade, A.
    MATERIALS CHARACTERISATION IV: COMPUTATIONAL METHODS AND EXPERIMENTS, 2009, 64 : 249 - 257
  • [48] Mixing and Characterisation of stainless steel 316L feedstock
    Kong, X.
    Quinard, C.
    Barriere, T.
    Gelin, J. C.
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2009, 2 : 709 - 712
  • [49] Fatigue crack growth in 316L stainless steel
    Wheatley, G
    Niefanger, R
    Estrin, Y
    Hu, XZ
    FRACTURE AND STRENGTH OF SOLIDS, PTS 1 AND 2: PT 1: FRACTURE MECHANICS OF MATERIALS; PT 2: BEHAVIOR OF MATERIALS AND STRUCTURE, 1998, 145-9 : 631 - 636
  • [50] Direct laser deposition of 316L stainless steel
    Majumdar, JD
    Manna, I
    Li, L
    TRENDS IN MATERIALS AND MANUFACTURING TECHNOLOGIES FOR TRANSPORTATION INDUSTRIES AND POWDER METALLURGY RESEARCH AND DEVELOPMENT IN THE TRANSPORTATION INDUSTRY, 2005, : 41 - 44