Comparing quasiparticle GW plus DMFT and LDA plus DMFT for the test bed material SrVO3

被引:60
|
作者
Taranto, C. [1 ]
Kaltak, M. [2 ,3 ]
Parragh, N. [4 ]
Sangiovanni, G. [4 ]
Kresse, G. [2 ,3 ]
Toschi, A. [1 ]
Held, K. [1 ]
机构
[1] Vienna Univ Technol, Inst Solid State Phys, A-1040 Vienna, Austria
[2] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[3] Ctr Computat Mat Sci, A-1090 Vienna, Austria
[4] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
基金
奥地利科学基金会;
关键词
ELECTRONIC-STRUCTURE CALCULATIONS; MEAN-FIELD THEORY; CORRELATED SYSTEMS; FERMIONS; MODEL;
D O I
10.1103/PhysRevB.88.165119
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have implemented the quasiparticle GW + dynamical mean field theory (DMFT) approach in the Vienna ab initio simulation package. To this end, a quasiparticle Hermitization of the G(0)W(0) self-energy a la Kotani-Schilfgaarde is employed, and the interaction values are obtained from the locally unscreened random phase approximation (RPA) using a projection onto Wannier orbitals. We compare quasiparticle GW + DMFT and local density approximation (LDA) + DMFT against each other and against experiment for SrVO3. We observe a partial compensation of stronger electronic correlations due to the reduced GW bandwidth and weaker correlations due to a larger screening of the RPA interaction, so that the obtained spectra are quite similar and agree well with experiment. Noteworthy, the quasiparticle GW + DMFT better reproduces the position of the lower Hubbard side band.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Magnetic Properties of Li2RuO3 as Studied by NMR and LDA plus DMFT Calculations
    Arapova, I. Yu.
    Buzlukov, A. L.
    Germov, A. Yu.
    Mikhalev, K. N.
    Tan, T. -Y.
    Park, J. -G.
    Streltsov, S. V.
    JETP LETTERS, 2017, 105 (06) : 375 - 379
  • [32] X-ray absorption branching ratio in actinides: LDA plus DMFT approach
    Shim, J. H.
    Haule, K.
    Kotliar, G.
    EPL, 2009, 85 (01)
  • [33] LDA plus DMFT spectral functions and effective electron mass enhancement in the superconductor LaFePO
    Skornyakov, S. L.
    Skorikov, N. A.
    Lukoyanov, A. V.
    Shorikov, A. O.
    Anisimov, V. I.
    PHYSICAL REVIEW B, 2010, 81 (17):
  • [34] Electronic structure of NaFeAs superconductor: LDA plus DMFT calculations compared to the ARPES experiment
    Nekrasov, I. A.
    Pavlov, N. S.
    Sadovskii, M. V.
    JETP LETTERS, 2015, 102 (01) : 26 - 31
  • [35] LDA plus DMFT study of Ru-based perovskite SrRuO3 and CaRuO3
    Jakobi, E.
    Kanungo, S.
    Sarkar, S.
    Schmitt, S.
    Saha-Dasgupta, T.
    PHYSICAL REVIEW B, 2011, 83 (04):
  • [36] Electronic Structure of NaFeAs Superconductor: LDA plus DMFT Calculations Compared with ARPES Experiment
    Nekrasov, I. A.
    Pavlov, N. S.
    Sadovskii, M. V.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2016, 29 (04) : 1117 - 1122
  • [37] A charge self-consistent LDA plus DMFT study of the spectral properties of hexagonal NiS
    Panda, S. K.
    Thunstrom, P.
    Di Marco, I.
    Schott, J.
    Delin, A.
    Dasgupta, I.
    Eriksson, O.
    Sarma, D. D.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [38] PHYS 461-Full charge self-consistency in LDA plus DMFT theory
    Pickett, Warren E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [39] LDA plus DMFT approach to resonant inelastic x-ray scattering in correlated materials
    Hariki, Atsushi
    Winder, Mathias
    Uozumi, Takayuki
    Kunes, Jan
    PHYSICAL REVIEW B, 2020, 101 (11)
  • [40] LDA plus DMFT approach to core-level spectroscopy: Application to 3d transition metal compounds
    Hariki, Atsushi
    Uozumi, Takayuki
    Kunes, Jan
    PHYSICAL REVIEW B, 2017, 96 (04)