Hardy inequalities on metric measure spaces

被引:13
|
作者
Ruzhansky, Michael [1 ,2 ,3 ]
Verma, Daulti [1 ,4 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[3] Queen Mary Univ London, Sch Math Sci, London, England
[4] Univ Delhi, Miranda House Coll, Delhi 110007, India
基金
英国工程与自然科学研究理事会;
关键词
Hardy inequalities; metric measure spaces; homogeneous group; hyperbolic space; Riemannian manifolds with negative curvature; SCALES;
D O I
10.1098/rspa.2018.0310
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this note, we give several characterizations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardy's original inequality. We give examples obtaining new weighted Hardy inequalities on R-n, on homogeneous groups, on hyperbolic spaces and on Cartan-Hadamard manifolds. We note that doubling conditions are not required for our analysis.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Hardy spaces H~p over non-homogeneous metric measure spaces and their applications
    FU Xing
    LIN Hai Bo
    YANG Da Chun
    YANG Dong Yong
    [J]. Science China Mathematics, 2015, 58 (02) : 309 - 388
  • [42] HARDY SPACES ON METRIC MEASURE SPACES WITH GENERALIZED SUB-GAUSSIAN HEAT KERNEL ESTIMATES
    Chen, Li
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 104 (02) : 162 - 194
  • [43] Hardy spaces H p over non-homogeneous metric measure spaces and their applications
    Fu Xing
    Lin HaiBo
    Yang DaChun
    Yang DongYong
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (02) : 309 - 388
  • [44] Hausdorff content and the Hardy-Littlewood maximal operator on metric measure spaces
    Liu, Liguang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 732 - 751
  • [45] MODIFIED HARDY-LITTLEWOOD MAXIMAL OPERATORS ON NONDOUBLING METRIC MEASURE SPACES
    Stempak, Krzysztof
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 443 - 448
  • [46] The Hardy-Littlewood maximal function on some metric measure spaces.
    Li, HQ
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 338 (01) : 31 - 34
  • [47] Hardy inequalities in Orlicz spaces
    Cianchi, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (06) : 2459 - 2478
  • [48] CONTRACTIVE INEQUALITIES FOR HARDY SPACES
    Brevig, Ole Fredrik
    Ortega-Cerda, Joaquim
    Seip, Kristian
    Zhao, Jing
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2018, 59 (01) : 41 - 56
  • [49] De Lellis–Topping type inequalities for smooth metric measure spaces
    Jia-Yong Wu
    [J]. Geometriae Dedicata, 2014, 169 : 273 - 281
  • [50] Comparison inequalities for heat semigroups and heat kernels on metric measure spaces
    Grigor'yan, Alexander
    Hu, Jiaxin
    Lau, Ka-Sing
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (10) : 2613 - 2641