Cross-Database Mammographic Image Analysis through Unsupervised Domain Adaptation

被引:0
|
作者
Kumar, Deepak [1 ]
Kumar, Chetan [1 ]
Shao, Ming [1 ,2 ]
机构
[1] Univ Massachusetts, Dept Data Sci, Dartmouth, MA 02747 USA
[2] Univ Massachusetts, Dept Comp & Informat Sci, Dartmouth, MA USA
关键词
Breast cancer diagnosis; mammographic image analysis; deep learning; transfer learning; BREAST-CANCER;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
World Health Organization report shows 519,000 deaths due to breast cancer in 2014 and it was much more in 2008. Therefore, it is required to take early steps in detection and diagnosis of breast cancer to decrease the associated death rate. Computer Aided Diagnosis (CAD) is useful in mass screening of breast cancer datasets. Data mining and machine learning technologies have already achieved significant success in many knowledge engineering areas including classification, regression and clustering, and most recently, have been employed to assist the diagnosis of cancers with promising outcomes. Traditional machine learning models are characterized by training and testing data with the same input feature space and data distribution. But when distribution changes, most machine learning models need to be modified or rebuilt from scratch to work on newly collected data. In many real world applications, it is expensive or impossible to recollect the needed data and rebuild the models. Therefore, there is a need to create high-performance learners trained with more easily obtained data from different domains. This methodology is referred as Transfer Learning. In this paper, we explore the usage of transfer learning, specially, unsupervised domain adaptation for breast cancer diagnosis to address the issues of fewer training data on target image dataset. On the strength of recent developed deep descriptors, we are able to adapt recent transfer learning methodologies, e.g., TCA (Transfer Component Analysis), CORAL (Correlation Alignment), BDA(Balanced Distribution Adaptation) to breast cancer diagnosis across multiple mammographic image databases including CBIS-DDSM, InBreast, MIAS, etc, and evaluate their performance. Experiments demonstrate that, without any labels in the target database, transfer learning is able to help improve the classification accuracy.
引用
收藏
页码:4035 / 4042
页数:8
相关论文
共 50 条
  • [41] Mind the Gap: Multilevel Unsupervised Domain Adaptation for Cross-Scene Hyperspectral Image Classification
    Cai, Mingshuo
    Xi, Bobo
    Li, Jiaojiao
    Feng, Shou
    Li, Yunsong
    Li, Zan
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [42] Unsupervised Cross-Modality Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial Loss
    Dou, Qi
    Ouyang, Cheng
    Chen, Cheng
    Chen, Hao
    Heng, Pheng-Ann
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 691 - 697
  • [43] Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain Adaptation
    Du, Zhekai
    Li, Jingjing
    Su, Hongzu
    Zhu, Lei
    Lu, Ke
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3936 - 3945
  • [44] FeatureTransfer: Unsupervised Domain Adaptation for Cross-Domain Deepfake Detection
    Chen, Baoying
    Tan, Shunquan
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [45] Semantically Consistent Image-to-Image Translation for Unsupervised Domain Adaptation
    Brehm, Stephan
    Scherer, Sebastian
    Lienhart, Rainer
    ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2022, : 131 - 141
  • [46] Cross-Domain Graph Convolutions for Adversarial Unsupervised Domain Adaptation
    Zhu, Ronghang
    Jiang, Xiaodong
    Lu, Jiasen
    Li, Sheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 3847 - 3858
  • [47] An Unsupervised Domain Adaptation Approach For Cross-Domain Visual Classification
    Hou, Cheng-An
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    2015 12TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2015,
  • [48] Rethinking adversarial domain adaptation: Orthogonal decomposition for unsupervised domain adaptation in medical image segmentation
    Sun, Yongheng
    Dai, Duwei
    Xu, Songhua
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [49] Rethinking adversarial domain adaptation: Orthogonal decomposition for unsupervised domain adaptation in medical image segmentation
    Sun, Yongheng
    Dai, Duwei
    Xu, Songhua
    Medical Image Analysis, 2022, 82
  • [50] Incremental Unsupervised Domain Adaptation Through Optimal Transport
    El Hamri, Mourad
    Bennani, Younes
    Falih, Issam
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,