Shoplifting Smart Stores Using Adversarial Machine Learning

被引:0
|
作者
Nassar, Mohamed [1 ]
Itani, Abdallah [1 ]
Karout, Mahmoud [1 ]
El Baba, Mohamad [1 ]
Kaakaji, Omar Al Samman [1 ]
机构
[1] Amer Univ Beirut AUB, Dept Comp Sci, Fac Arts & Sci, Beirut, Lebanon
关键词
Smart Stores; Adversarial Machine Learning; Adversarial Patch; Deep Learning; Classification; Convolutional Neural Networks; Object Recognition;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Smart stores cashier-less technology is partially based on camera-equipped object detection systems. Powerful machine learning algorithms are deployed at the back-end for classification. In this paper, we explore the usage of adversarial machine learning techniques to deceive the smart stores' classifiers. In particular, we experiment with printable adversarial patches and target making an expensive item classified as a cheaper one. By sticking patches to the objects and lifting them, a customer can make her customized discounts and alter the machine learning prediction. We discuss experiments, results, and possible countermeasures.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Predicting Smart Building Occupancy Using Machine Learning
    Singh, Abhishek
    Kansal, Vineet
    Gaur, Manish
    Pandey, Mahima Shanker
    PROCEEDINGS OF THIRD DOCTORAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE, DOSCI 2022, 2023, 479 : 145 - 151
  • [32] A smart DDMRP model using machine learning techniques
    Aguilar, Jose
    Guillen, Ricardo Jose Dos Santos
    Garcia, Rodrigo
    Gomez, Carlos
    Jerez, M.
    Narvaez, Marvin Luis Jimenez
    Puerto, Eduard
    INTERNATIONAL JOURNAL OF VALUE CHAIN MANAGEMENT, 2023, 14 (02) : 107 - 142
  • [33] Crack identification using smart paint and machine learning
    Quqa, Said
    Li, Sijia
    Shu, Yening
    Landi, Luca
    Loh, Kenneth J.
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (01): : 248 - 264
  • [34] Using machine learning in the adaptive control of a smart environment
    Stenudd, Sakari
    VTT Publications, 2010, (751): : 1 - 82
  • [35] Smart Energy Management System Using Machine Learning
    Akram, Ali Sheraz
    Abbas, Sagheer
    Khan, Muhammad Adnan
    Athar, Atifa
    Ghazal, Taher M.
    Al Hamadi, Hussam
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (01): : 959 - 973
  • [36] Smart Attendance System Using Machine Learning Algorithms
    Chowdary, M. Nitin
    Sujana, V
    Satvika, K.
    Srinivas, K. Lakshmi
    Suhasini, P. S.
    MACHINE LEARNING AND AUTONOMOUS SYSTEMS, 2022, 269 : 99 - 115
  • [37] Adversarial Machine Learning in the Physical Domain
    Drenkow, Nathan G.
    Fendley, Neil M.
    Lennon, Max
    Burlina, Philippe M.
    Wang, I-Jeng
    Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 2021, 35 (04): : 426 - 429
  • [38] Machine Learning it Adversarial RF Environments
    Roy, Debashri
    Mukherjee, Tathagata
    Chatterjee, Mainak
    IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (05) : 82 - 87
  • [39] An Exploratory Study of Machine Learning Model Stores
    Xiu, Minke
    Jiang, Zhen Ming
    Adams, Bram
    IEEE SOFTWARE, 2021, 38 (01) : 114 - 122
  • [40] Using Negative Detectors for Identifying Adversarial Data Manipulation in Machine Learning
    Gupta, Kishor Datta
    Dasgupta, Dipankar
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,