Premixed Hydrogen/air Flame in Ceramic Granular Bed

被引:1
|
作者
Yang, S. I. [1 ]
Lin, S. C. [2 ]
机构
[1] Natl Formosa Univ, Dept Power Mech Engn, Huwei Township 632, Yunlin County, Taiwan
[2] Inst Nucl Energy Res, Taoyuan 325, Taiwan
关键词
Hydrogen; porous medium; mild combustion; feedback combustion; high-temperature combustion; AIR; COMBUSTION; BURNER; HYDROCARBON; MIXTURES; SPEEDS; SYSTEM;
D O I
10.1016/j.egypro.2015.07.269
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study investigates the characteristics of a lean premixed hydrogen/air flame in a ceramic granular bed (CGB) by conducting experimental measurements and numerical simulations. The experimental results show that the operating range (equivalence ratio, phi=0.2-0.4) of CGBs for flame propagation is smaller than that of free flame due to the laminar flame speed (S-L), reactivity, and firing rate (Gamma) of H-2. In addition, flame temperature (T-f) increases with increasing, but decreases with increasing phi. Furthermore, S-ab/S-L decreases with increasing u(epsilon)/S-L by the fuel characteristic of Hydrogen (H-2) and heat recirculation in the CGB. The numerical simulation results show that the flame reaction zone in the CGB (porosity, epsilon = 0.33) is greater than that of free flame (epsilon = 1) because H2 reacts early and changes the flame propagation characteristics. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:2033 / 2037
页数:5
相关论文
共 50 条
  • [31] ANALYSIS OF NO FORMATION IN COUNTER-FLOW PREMIXED HYDROGEN-AIR FLAME
    Xie, Tianfang
    Wang, Peiyong
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 2013, 37 (03) : 851 - 859
  • [32] Flame propagation of premixed hydrogen-air explosion in a closed duct with obstacles
    Qin, Yi
    Chen, Xiaowei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (02) : 2684 - 2701
  • [33] Combustion Performance of the Premixed Ammonia-Hydrogen-Air Flame in Porous Burner
    Hashemi, Seyed Mohammad
    Wang, Ping
    Mao, Chenlin
    Cheng, Kang
    Sun, Ying
    Yin, Zhicheng
    COMBUSTION SCIENCE AND TECHNOLOGY, 2024, 196 (16) : 4121 - 4138
  • [34] INFLUENCE OF HYDROGEN ADDITION ON LEAN PREMIXED METHANE-AIR FLAME STATISTICS
    Yilmaz, Baris
    Ozdogan, Sibel
    Gokalp, Iskender
    PROCEEDINGS OF THE ASME 10TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, 2010, VOL 4, 2010, : 281 - 287
  • [35] Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber
    Xiao, Huahua
    Sun, Jinhua
    Chen, Peng
    JOURNAL OF HAZARDOUS MATERIALS, 2014, 268 : 132 - 139
  • [36] Geometric influence of perforated plate on premixed hydrogen-air flame propagation
    Li, Quan
    Sun, Xuxu
    Wang, Xing
    Zhang, Zhi
    Lu, Shouxiang
    Wang, Changjian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (46) : 21572 - 21581
  • [37] Optimization of flame stabilization methods in the premixed microcombustion of hydrogen-air mixture
    Jha, Vikalp
    Velidi, Gurunadh
    Emani, Sampath
    HEAT TRANSFER, 2022, 51 (06) : 5896 - 5918
  • [38] The effects of coaxial air on flame structure in hydrogen non-premixed flames
    Kim, M
    Yoon, Y
    Kim, S
    COMBUSTION SCIENCE AND TECHNOLOGY IN ASIA-PACIFIC AREA: TODAY AND TOMORROW, 2003, : 117 - 120
  • [39] Modulation of wall turbulence by propagating flame of premixed hydrogen-air combustion
    Ohta, Takashi
    Onishi, Yuta
    Sakai, Yasuyuki
    COMBUSTION AND FLAME, 2022, 241
  • [40] Flame propagation and heat transfer characteristics of a hydrogen-air premixed flame in a constant volume vessel
    Yenerdag, Basmil
    Minamoto, Yuki
    Naka, Yoshitsugu
    Shimura, Masayasu
    Tanahashi, Mamoru
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (22) : 9679 - 9689