Calculating unknown eigenvalues with a quantum algorithm

被引:0
|
作者
Zhou, Xiao-Qi [1 ,2 ]
Kalasuwan, Pruet [1 ,2 ,3 ]
Ralph, Timothy C. [4 ]
O'Brien, Jeremy L. [1 ,2 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Ctr Quantum Photon, Bristol BS8 1UB, Avon, England
[2] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1UB, Avon, England
[3] Prince Songkla Univ, Fac Sci, Dept Mat Sci & Technol, Hat Yai 90112, Songkla, Thailand
[4] Univ Queensland, Sch Math & Phys, Ctr Quantum Computat & Commun Technol, Brisbane, Qld 4072, Australia
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
NUCLEAR-MAGNETIC-RESONANCE; FACTORING ALGORITHM; ENTANGLEMENT; COMPUTATION; CIRCUITS; STATE;
D O I
10.1038/NPHOTON.2012.360
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A quantum algorithm solves computational tasks using fewer physical resources than the best-known classical algorithm. Of most interest are those for which an exponential reduction is achieved. The key example is the phase estimation algorithm, which provides the quantum speedup in Shor's factoring algorithm and quantum simulation algorithms. To date, fully quantum experiments of this type have demonstrated only the read-out stage of quantum algorithms, but not the steps in which input data is read in and processed to calculate the final quantum state. Indeed, knowing the answer beforehand was essential. We present a photonic demonstration of a full quantum algorithm-the iterative phase estimation algorithm (IPEA)-without knowing the answer in advance. This result suggests practical applications of the phase estimation algorithm, including quantum simulations and quantum metrology in the near term, and factoring in the long term.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [41] Some acceleration techniques for calculating the eigenvalues of normal Toeplitz matrices
    A. K. Abdikalykov
    Kh. D. Ikramov
    V. N. Chugunov
    Computational Mathematics and Mathematical Physics, 2014, 54 : 1761 - 1764
  • [42] Some acceleration techniques for calculating the eigenvalues of normal Toeplitz matrices
    Abdikalykov, A. K.
    Ikramov, Kh. D.
    Chugunov, V. N.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (12) : 1761 - 1764
  • [43] Calculating the branch points of the eigenvalues of the Coulomb spheroidal wave equation
    Skorokhodov S.L.
    Khristoforov D.V.
    Computational Mathematics and Mathematical Physics, 2007, 47 (11) : 1802 - 1818
  • [44] THE OPW METHOD FOR CALCULATING ENERGY EIGENVALUES EXTENDED TO CRYSTALS OF COMPOUNDS
    WOODRUFF, TO
    PHYSICAL REVIEW, 1954, 93 (04): : 947 - 947
  • [45] A direct method for calculating M-eigenvalues of an elasticity tensor
    Zhao, Jianxing
    Luo, Yanyan
    Sang, Caili
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (01) : 317 - 357
  • [46] On multiplicity of eigenvalues in quantum graph theory
    Pivovarchik, V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 480 (02)
  • [47] EIGENVALUES OF SUPERSYMMETRIC QUANTUM MATRIX MODELS
    Motycka, Jozef
    Urban, Jan
    Babinec, Peter
    ACTA PHYSICA POLONICA B, 2014, 45 (08): : 1743 - 1758
  • [48] LOWER ESTIMATES ON EIGENVALUES OF QUANTUM GRAPHS
    Mugnolo, Delio
    Pluemer, Marvin
    OPERATORS AND MATRICES, 2020, 14 (03): : 743 - 765
  • [49] Quantum Walks on Regular Graphs and Eigenvalues
    Godsil, Chris
    Guo, Krystal
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [50] Computing quantum eigenvalues made easy
    Korsch, HJ
    Glück, M
    EUROPEAN JOURNAL OF PHYSICS, 2002, 23 (04) : 413 - 426