Sparsity identification in ultra-high dimensional quantile regression models with longitudinal data

被引:4
|
作者
Gao, Xianli [1 ]
Liu, Qiang [1 ,2 ]
机构
[1] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[2] Beijing Key Lab Megareg Sustainable Dev Modelling, Beijing, Peoples R China
关键词
Ultra-high dimensional model; longitudinal data; quantile regression; variable selection; VARYING COEFFICIENT MODELS; VARIABLE SELECTION; EMPIRICAL LIKELIHOOD; LINEAR-MODELS; CHANGE-POINT;
D O I
10.1080/03610926.2019.1604966
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a variable selection method for quantile regression model in ultra-high dimensional longitudinal data called as the weighted adaptive robust lasso (WAR-Lasso) which is double-robustness. We derive the consistency and the model selection oracle property of WAR-Lasso. Simulation studies show the double-robustness of WAR-Lasso in both cases of heavy-tailed distribution of the errors and the heavy contaminations of the covariates. WAR-Lasso outperform other methods such as SCAD and etc. A real data analysis is carried out. It shows that WAR-Lasso tends to select fewer variables and the estimated coefficients are in line with economic significance.
引用
收藏
页码:4712 / 4736
页数:25
相关论文
共 50 条
  • [31] Unconditional quantile regression with high-dimensional data
    Sasaki, Yuya
    Ura, Takuya
    Zhang, Yichong
    QUANTITATIVE ECONOMICS, 2022, 13 (03) : 955 - 978
  • [32] Forward Regression for Ultra-High Dimensional Variable Screening
    Wang, Hansheng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (488) : 1512 - 1524
  • [33] Adaptive penalized quantile regression for high dimensional data
    Zheng, Qi
    Gallagher, Colin
    Kulasekera, K. B.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (06) : 1029 - 1038
  • [34] A Systematic Review of Quantile Regression in Varying Coefficient Models for Longitudinal Data
    Tantular, B.
    Ruchjana, B. N.
    Andriyana, Y.
    Verhasselt, A.
    ENGINEERING LETTERS, 2022, 30 (04) : 1504 - 1513
  • [35] Weighted quantile regression for longitudinal data
    Lu, Xiaoming
    Fan, Zhaozhi
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 569 - 592
  • [36] Robust and smoothing variable selection for quantile regression models with longitudinal data
    Fu, Z. C.
    Fu, L. Y.
    Song, Y. N.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2600 - 2624
  • [37] Weighted quantile regression for longitudinal data
    Xiaoming Lu
    Zhaozhi Fan
    Computational Statistics, 2015, 30 : 569 - 592
  • [38] GLOBALLY ADAPTIVE LONGITUDINAL QUANTILE REGRESSION WITH HIGH DIMENSIONAL COMPOSITIONAL COVARIATES
    Ma, Huijuan
    Zheng, Qi
    Zhang, Zhumin
    Lai, Huichuan
    Peng, Limin
    STATISTICA SINICA, 2023, 33 : 1295 - 1318
  • [39] Variable selection in censored quantile regression with high dimensional data
    Yali Fan
    Yanlin Tang
    Zhongyi Zhu
    Science China Mathematics, 2018, 61 (04) : 641 - 658
  • [40] Variable selection in censored quantile regression with high dimensional data
    Fan, Yali
    Tang, Yanlin
    Zhu, Zhongyi
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (04) : 641 - 658