Quantum Hurwitz numbers and Macdonald polynomials

被引:10
|
作者
Harnad, J. [1 ,2 ]
机构
[1] Univ Montreal, Ctr Rech Math, CP 6128,Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada
[2] Concordia Univ, Dept Math & Stat, 1455 Maisonneuve Blvd W, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
TODA EQUATIONS; REPRESENTATION;
D O I
10.1063/1.4967953
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parametric families in the center Z(C[S-n]) of the group algebra of the symmetric group are obtained by identifying the indeterminates in the generating function for Macdonald polynomials as commuting Jucys-Murphy elements. Their eigenvalues provide coefficients in the double Schur function expansion of 2D Toda tau-functions of hypergeometric type. Expressing these in the basis of products of power sum symmetric functions, the coefficients may be interpreted geometrically as parametric families of quantum Hurwitz numbers, enumerating weighted branched coverings of the Riemann sphere. Combinatorially, they give quantum weighted sums over paths in the Cayley graph of S-n generated by transpositions. Dual pairs of bases for the algebra of symmetric functions with respect to the scalar product in which the Macdonald polynomials are orthogonal provide both the geometrical and combinatorial significance of these quantum weighted enumerative invariants. Published by AIP Publishing.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] HURWITZ SEQUENCES OF POLYNOMIALS
    GENIN, Y
    PHILIPS RESEARCH REPORTS, 1975, 30 (2-3): : 89 - 102
  • [22] Matrix model generating function for quantum weighted Hurwitz numbers
    Harnad, J.
    Runov, B.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)
  • [23] ON ROBUST HURWITZ POLYNOMIALS
    ESLAMI, M
    1989 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-3, 1989, : 1776 - 1779
  • [24] ON PROPERTIES OF HURWITZ POLYNOMIALS
    ANTONCHIK, VS
    AUTOMATION AND REMOTE CONTROL, 1994, 55 (11) : 1699 - 1702
  • [25] Nonsemisimple Macdonald polynomials
    Cherednik, Ivan
    SELECTA MATHEMATICA-NEW SERIES, 2009, 14 (3-4): : 427 - 569
  • [26] On generalized Macdonald polynomials
    Mironov, A.
    Morozov, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (01)
  • [27] Nonsemisimple Macdonald polynomials
    Ivan Cherednik
    Selecta Mathematica, 2009, 14 : 427 - 569
  • [28] NOTE ON HURWITZ NUMBERS
    RIEGER, GJ
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 296 : 212 - 220
  • [29] On sequences of Hurwitz polynomials related to orthogonal polynomials
    Martinez, Noe
    Garza, Luis E.
    Aguirre-Hernandez, Baltazar
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2191 - 2208
  • [30] Tropical Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (02) : 241 - 265