Intrusion detection based on behavior mining and machine learning techniques

被引:0
|
作者
Mukkamala, Srinivas [1 ]
Xu, Dennis
Sung, Andrew H.
机构
[1] New Mexico Inst Min & Technol, Dept Comp Sci, Socorro, NM 87801 USA
[2] Inst Complex Addit Syst & Anal, Socorro, NM 87801 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes results concerning the classification capability of unsupervised and supervised machine learning techniques in detecting intrusions using network audit trails. In this paper we investigate well known machine learning techniques: Frequent Pattern Tree mining (FP-tree), classification and regression tress (CART), multivariate regression splines (MARS) and TreeNet. The best model is chosen based on the classification accuracy (ROC curve analysis). The results show that high classification accuracies can be achieved in a fraction of the time required by well known support vector machines and artificial neural networks. TreeNet performs the best for normal, probe and denial of service attacks (DoS). CART performs the best for user to super user (U2su) and remote to local (R2L).
引用
收藏
页码:619 / 628
页数:10
相关论文
共 50 条
  • [31] Analysis on intrusion detection system using machine learning techniques
    Seraphim B.I.
    Poovammal E.
    Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 423 - 441
  • [32] Security for the Metaverse: Blockchain and Machine Learning Techniques for Intrusion Detection
    Truong, Vu Tuan
    Le, Long Bao
    IEEE NETWORK, 2024, 38 (05): : 204 - 212
  • [33] Security intrusion detection using quantum machine learning techniques
    Maxim Kalinin
    Vasiliy Krundyshev
    Journal of Computer Virology and Hacking Techniques, 2023, 19 : 125 - 136
  • [34] A Comparative Analysis of Machine Learning Techniques for IoT Intrusion Detection
    Vitorino, Joao
    Andrade, Rui
    Praca, Isabel
    Sousa, Orlando
    Maia, Eva
    FOUNDATIONS AND PRACTICE OF SECURITY, FPS 2021, 2022, 13291 : 191 - 207
  • [35] Advancing Network Intrusion Detection Systems with Machine Learning Techniques
    Benmalek, Mourad
    Haouam, Kamel-Dine
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2024, 4 (03): : 2575 - 2592
  • [36] PERFORMANCE ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR INTRUSION DETECTION SYSTEM
    Jadhav, Abhijit D.
    Pellakuri, Vidyullatha
    2019 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2019,
  • [37] Machine Learning Techniques for Enhanced Intrusion Detection in IoT Security
    Hakami, Hanadi
    Faheem, Muhammad
    Bashir Ahmad, Majid
    IEEE ACCESS, 2025, 13 : 31140 - 31158
  • [38] Intrusion Detection in SCADA systems using Machine Learning Techniques
    Maglaras, Leandros A.
    Jiang, Jianmin
    2014 SCIENCE AND INFORMATION CONFERENCE (SAI), 2014, : 626 - 631
  • [39] Comparative study of supervised machine learning techniques for intrusion detection
    Gharibian, Farnaz
    Ghorbani, Ali A.
    CNSR 2007: PROCEEDINGS OF THE FIFTH ANNUAL CONFERENCE ON COMMUNICATION NETWORKS AND SERVICES RESEARCH, 2007, : 350 - +
  • [40] Review on Network Intrusion Detection Techniques using Machine Learning
    Shashank, K.
    Balachandra, Mamatha
    PROCEEDINGS OF 2018 IEEE DISTRIBUTED COMPUTING, VLSI, ELECTRICAL CIRCUITS AND ROBOTICS (DISCOVER), 2018, : 104 - 109