A remark on Ulrich and ACM bundles

被引:1
|
作者
Joshi, Kirti [1 ]
机构
[1] Univ Arizona, Math Dept, 617 N Santa Rita, Tucson, AZ 85721 USA
关键词
Frobenius split varieties; Ordinary varieties; Calabi-Yau variety; ACM bundles; Ulrich bundles; CURVES;
D O I
10.1016/j.jalgebra.2019.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I show that on any smooth, projective ordinary curve of genus at least two and a projective embedding, there is a natural example of a stable Ulrich bundle for this embedding: namely the sheaf B-X(1) of locally exact differentials twisted by O-x (1) given by this embedding and in particular there exist ordinary varieties of any dimension which carry Ulrich bundles. In higher dimensions, assuming X is Frobenius split variety I show that B-X(1) is an ACM bundle and if X is also a Calabi-Yau variety and p > 2 then B-X(1) is not a direct sum of line bundles. In particular I show that B-X(1) is an ACM bundle on any ordinary Calabi-Yau variety. I also prove a characterization of projective varieties with trivial canonical bundle such that B-X(1) is ACM (for some projective embedding datum): all such varieties are Frobenius split (with trivial canonical bundle). (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 50 条
  • [31] Ulrich line bundles on double planes
    Parameswaran, A. J.
    Narayanan, Poornapushkala
    JOURNAL OF ALGEBRA, 2021, 583 : 187 - 208
  • [32] Ulrich bundles on blowing up (and an erratum)
    Casnati, Gianfranco
    Kim, Yeongrak
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (12) : 1291 - 1297
  • [33] ON VARIETIES WITH ULRICH TWISTED CONORMAL BUNDLES
    Antonelli, Vincenzo
    Casnati, Gianfranco
    Lopez, Angelo felice
    Raychaudhury, Debaditya
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (11) : 4645 - 4658
  • [34] Stable Ulrich bundles on cubic fourfolds
    Hoang, Truong Le
    Hoang, Yen Ngoc
    MANUSCRIPTA MATHEMATICA, 2023, 174 (1-2) : 243 - 267
  • [35] A REMARK ON SEMISTABILITY OF QUIVER BUNDLES
    Schmitt, A.
    EURASIAN MATHEMATICAL JOURNAL, 2012, 3 (01): : 110 - 138
  • [36] aCM bundles on a general abelian surface
    Kōta Yoshioka
    Archiv der Mathematik, 2021, 116 : 529 - 539
  • [37] ACM BUNDLES ON DEL PEZZO SURFACES
    Pons-Llopis, Joan
    Tonini, Fabio
    MATEMATICHE, 2009, 64 (02): : 177 - 211
  • [38] aCM bundles on a general abelian surface
    Yoshioka, Kota
    ARCHIV DER MATHEMATIK, 2021, 116 (05) : 529 - 539
  • [39] Homogeneous ACM bundles on isotropic Grassmannians
    Du, Rong
    Fang, Xinyi
    Ren, Peng
    FORUM MATHEMATICUM, 2023, 35 (03) : 763 - 782
  • [40] REFERENCES AND KEYWORDS FOR COLLECTED ALGORITHMS FOR ACM - REMARK
    HAMILTON, DE
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1985, 11 (03): : 305 - 307