A remark on Ulrich and ACM bundles

被引:1
|
作者
Joshi, Kirti [1 ]
机构
[1] Univ Arizona, Math Dept, 617 N Santa Rita, Tucson, AZ 85721 USA
关键词
Frobenius split varieties; Ordinary varieties; Calabi-Yau variety; ACM bundles; Ulrich bundles; CURVES;
D O I
10.1016/j.jalgebra.2019.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I show that on any smooth, projective ordinary curve of genus at least two and a projective embedding, there is a natural example of a stable Ulrich bundle for this embedding: namely the sheaf B-X(1) of locally exact differentials twisted by O-x (1) given by this embedding and in particular there exist ordinary varieties of any dimension which carry Ulrich bundles. In higher dimensions, assuming X is Frobenius split variety I show that B-X(1) is an ACM bundle and if X is also a Calabi-Yau variety and p > 2 then B-X(1) is not a direct sum of line bundles. In particular I show that B-X(1) is an ACM bundle on any ordinary Calabi-Yau variety. I also prove a characterization of projective varieties with trivial canonical bundle such that B-X(1) is ACM (for some projective embedding datum): all such varieties are Frobenius split (with trivial canonical bundle). (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 50 条
  • [1] Ulrich and aCM bundles from invariant theory
    Manivel, Laurent
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (02) : 706 - 718
  • [2] Elliptic curves, ACM bundles and Ulrich bundles on prime Fano threefolds
    Ciliberto, Ciro
    Flamini, Flaminio
    Knutsen, Andreas Leopold
    COLLECTANEA MATHEMATICA, 2024, 75 (03) : 795 - 822
  • [3] Homogeneous ACM and Ulrich bundles on rational homogeneous spaces
    Fang, Xinyi
    FORUM MATHEMATICUM, 2025, 37 (01) : 325 - 343
  • [4] On Ulrich bundles on projective bundles
    Hochenegger, Andreas
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022, 63 (03): : 573 - 587
  • [5] An introduction to Ulrich bundles
    Beauville, Arnaud
    EUROPEAN JOURNAL OF MATHEMATICS, 2018, 4 (01) : 26 - 36
  • [6] STABLE ULRICH BUNDLES
    Casanellas, Marta
    Hartshorne, Robin
    Geiss, Florian
    Schreyer, Frank-Olaf
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (08)
  • [7] ACM ALGORITHMS POLICY - REMARK
    KROGH, FT
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1987, 13 (02): : 183 - 186
  • [8] Ulrich bundles on blowing ups
    Kim, Yeongrak
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (12) : 1215 - 1218
  • [9] ULRICH BUNDLES ON ABELIAN SURFACES
    Beauville, Arnaud
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) : 4609 - 4611
  • [10] Ulrich bundles on cubic fourfolds
    Faenzi, Daniele
    Kim, Yeongrak
    COMMENTARII MATHEMATICI HELVETICI, 2022, 97 (04) : 691 - 728