A generalized existence theorem of BSDEs

被引:11
|
作者
Jia, GY [1 ]
机构
[1] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
关键词
D O I
10.1016/j.crma.2006.02.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, we deal with one-dimensional backward stochastic differential equations (BSDEs) where the coefficient is left-Lipschitz in y (may be discontinuous) and Lipschitz in z, but without explicit growth constraint. We prove, in this setting, an existence theorem for backward stochastic differential equations.
引用
收藏
页码:685 / 688
页数:4
相关论文
共 50 条
  • [31] Representation Theorem for Generators of Quadratic BSDEs
    Shi-qiu ZHENG
    Shou-mei LI
    Acta Mathematicae Applicatae Sinica, 2018, 34 (03) : 622 - 635
  • [32] A new comparison theorem of multidimensional BSDEs
    Pan-yu Wu
    Zeng-jing Chen
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 131 - 138
  • [33] COMPARISON THEOREM FOR DIAGONALLY QUADRATIC BSDES
    Luo, Peng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (06) : 2543 - 2557
  • [34] On existence of solutions of BSDEs with continuous coefficient
    Rozkosz, A
    STATISTICS & PROBABILITY LETTERS, 2004, 67 (03) : 249 - 256
  • [35] Representation Theorem for Generators of Quadratic BSDEs
    Zheng, Shi-qiu
    Li, Shou-mei
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (03): : 622 - 635
  • [36] DONSKER-TYPE THEOREM FOR BSDES
    Briand, Philippe
    Delyon, Bernard
    Memin, Jean
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2001, 6 : 1 - 14
  • [37] A general comparison theorem for reflected BSDEs
    Kim, Mun-Chol
    Hun, O.
    STATISTICS & PROBABILITY LETTERS, 2021, 173
  • [38] The limitation theorem of g-supersolution for BSDEs
    Han, Baoyan
    MANUFACTURING PROCESS AND EQUIPMENT, PTS 1-4, 2013, 694-697 : 2914 - 2917
  • [39] A generalized existence theorem of backward doubly stochastic differential equations
    Lin, Qian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (08) : 1525 - 1534
  • [40] Existence and uniqueness theorem for a generalized Isaacs-Bellman equation
    Nikitin, F. F.
    Chistyakov, S. V.
    DIFFERENTIAL EQUATIONS, 2007, 43 (06) : 757 - 766