Short-term wind speed forecasting based on a hybrid model

被引:112
|
作者
Zhang, Wenyu [1 ,2 ]
Wang, Jujie [1 ,2 ]
Wang, Jianzhou [3 ]
Zhao, Zengbao [1 ,2 ]
Tian, Meng [1 ,2 ]
机构
[1] Lanzhou Univ, Coll Atmospher Sci, Key Lab Semiarid Climate Change, Minist Educ, Lanzhou 730000, Peoples R China
[2] Key Lab Arid Climat Change & Reducing Disaster Ga, Lanzhou 730000, Peoples R China
[3] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Forecasting; Wind speed; Wavelet transform; Seasonal adjustment; RBF neural networks; SUPPORT VECTOR MACHINES; RBF NEURAL-NETWORKS; PREDICTION; APPROXIMATION; GENERATION; STRATEGY;
D O I
10.1016/j.asoc.2013.02.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wind power is currently one of the types of renewable energy with a large generation capacity. However, operation of wind power generation is very challenging because of the intermittent and stochastic nature of the wind speed. Wind speed forecasting is a very important part of wind parks management and the integration of wind power into electricity grids. As an artificial intelligence algorithm, radial basis function neural network (RBFNN) has been successfully applied into solving forecasting problems. In this paper, a novel approach named WTT-SAM-RBFNN for short-term wind speed forecasting is proposed by applying wavelet transform technique (WTT) into hybrid model which hybrids the seasonal adjustment method (SAM) and the RBFNN. Real data sets of wind speed in Northwest China are used to evaluate the forecasting accuracy of the proposed approach. To avoid the randomness caused by the RBFNN model or the RBFNN part of the hybrid model, all simulations in this study are repeated 30 times to get the average. Numerical results show that the WTT-SAM-RBFNN outperforms the persistence method (PM), multilayer perceptron neural network (MLP), RBFNN, hybrid SAM and RBFNN (SAM-RBFNN), and hybrid WTT and RBFNN (WTT-RBFNN). It is concluded that the proposed approach is an effective way to improve the prediction accuracy. (C) 2013 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:3225 / 3233
页数:9
相关论文
共 50 条
  • [41] A Short-Term Wind Speed Forecasting Hybrid Model Based on Empirical Mode Decomposition and Multiple Kernel Learning
    Xu, Yuanyuan
    Yang, Genke
    COMPLEXITY, 2020, 2020
  • [42] A Short-Term Wind Speed Forecasting Model Based on a Multi-Variable Long Short-Term Memory Network
    Xie, Anqi
    Yang, Hao
    Chen, Jing
    Sheng, Li
    Zhang, Qian
    ATMOSPHERE, 2021, 12 (05)
  • [43] Short-term Wind Speed Forecasting Based on an EEMD-CAPSO-RVM Model
    Zang, Haixiang
    Liang, Zhi
    Guo, Mian
    Qian, Zeyu
    Wei, Zhinong
    Sun, Guoqiang
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 439 - 443
  • [44] Short-term wind speed forecasting model based on ANN with statistical feature parameters
    Ioakimidis, Christos S.
    Dallas, Panagiotis I.
    Genikomsakis, Konstantinos N.
    Lopez, Sergio
    IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2015, : 971 - 976
  • [45] Short-Term Wind Speed Forecasting Based on the EEMD-GS-GRU Model
    Yao, Huaming
    Tan, Yongjie
    Hou, Jiachen
    Liu, Yaru
    Zhao, Xin
    Wang, Xianxun
    ATMOSPHERE, 2023, 14 (04)
  • [46] A Short-term Wind Speed Forecasting Model Based on Improved QPSO Optimizing LSSVM
    Hu, Zhiyuan
    Liu, Qunying
    Tian, Yunxiang
    Liao, Yongfeng
    2014 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2014,
  • [47] Short-Term Wind Speed Forecasting Based on Information of Neighboring Wind Farms
    Wang, Zhongju
    Zhang, Jing
    Zhang, Yu
    Huang, Chao
    Wang, Long
    IEEE ACCESS, 2020, 8 : 16760 - 16770
  • [48] A hybrid intelligent framework for forecasting short-term hourly wind speed based on machine learning
    Wang, Yelin
    Yang, Ping
    Zhao, Shunyu
    Chevallier, Julien
    Xiao, Qingtai
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [49] Short-Term Wind Speed Forecasting Based on Data Preprocessing and Improved Hybrid Prediction Network
    Chen, Gonggui
    Li, Lijun
    Qin, Feng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 734 - 738
  • [50] A hybrid method for short-term wind speed forecasting based on Bayesian optimization and error correction
    Guo, Xiuting
    Zhu, Changsheng
    Hao, Jie
    Zhang, Shengcai
    Zhu, Lina
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2021, 13 (03)