Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications

被引:100
|
作者
Rodrigues, Sandra C. [1 ,2 ]
Salgado, Christiane L. [1 ,2 ]
Sahu, Abhishek [1 ,2 ]
Garcia, Monica P. [3 ]
Fernandes, Maria H. [3 ]
Monteiro, Fernando J. [1 ,2 ]
机构
[1] Univ Porto, INEB Inst Engn Biomed, P-4150180 Oporto, Portugal
[2] Univ Porto, Fac Engn FEUP, Dept Engn Met & Mat, P-4200465 Oporto, Portugal
[3] Univ Porto FMDUP, Lab Farmacol & Biocompatibilidade Celular, Fac Med Dent, P-4200393 Oporto, Portugal
关键词
biomaterials; bone tissue engineering; cryogels; nanohydroxyapatite; collagen; AGAROSE-GELATIN CRYOGELS; MECHANICAL-PROPERTIES; OSTEOBLAST ADHESION; IN-VIVO; NANO-HYDROXYAPATITE; COMPOSITE SCAFFOLDS; POLYMERIC CRYOGELS; CELLS; BIOCOMPATIBILITY; VASCULARIZATION;
D O I
10.1002/jbm.a.34394
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent efforts of bone repair focus on development of porous scaffolds for cell adhesion and proliferation. Collagen-nanohydroxyapatite (HA) scaffolds (70:30; 50:50; and 30:70 mass percentage) were produced by cryogelation technique using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide as crosslinking agents. A pure collagen scaffold was used as control. Morphology analysis revealed that all cryogels had highly porous structure with interconnective porosity and the nanoHA aggregates were randomly dispersed throughout the scaffold structure. Chemical analysis showed the presence of all major peaks related to collagen and HA in the biocomposites and indicated possible interaction between nanoHA aggregates and collagen molecules. Porosity analysis revealed an enhancement in the surface area as the nanoHA percentage increased in the collagen structure. The biocomposites showed improved mechanical properties as the nanoHA content increased in the scaffold. As expected, the swelling capacity decreased with the increase of nanoHA content. In vitro studies with osteoblasts cells showed that they were able to attach and spread in all cryogels surfaces. The presence of collagen-nanoHA biocomposites resulted in higher overall cellular proliferation compared to pure collagen scaffold. A statistically significant difference between collagen and collagen-nanoHA cryogels was observed after 21 day of cell culture. These innovative collagen-nanoHA cryogels could have potentially appealing application as scaffolds for bone regeneration. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.
引用
收藏
页码:1080 / 1094
页数:15
相关论文
共 50 条
  • [41] Preparation, Characterization, and Implantation of Porous Fibroin/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Xu, Shui
    Xia, Ju
    Wu, Tingfang
    Gao, Baodong
    Zhang, Yan
    Wang, Xin
    Cheng, Guotao
    Zhu, Yong
    SCIENCE OF ADVANCED MATERIALS, 2018, 10 (11) : 1601 - 1607
  • [42] Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering
    Qian, Junmin
    Suo, Aili
    Jin, Xinxia
    Xu, Weijun
    Xu, Minghui
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014, 102 (09) : 2961 - 2971
  • [43] Mechanical characterization of collagen fibers and scaffolds for tissue engineering
    Gentleman, E
    Lay, AN
    Dickerson, DA
    Nauman, EA
    Livesay, GA
    Dee, KC
    BIOMATERIALS, 2003, 24 (21) : 3805 - 3813
  • [44] Porous akermanite scaffolds for bone tissue engineering:: Preparation, characterization, and in vitro studies
    Wu, Chengtie
    Chang, Jiang
    Zhai, Wanyin
    Ni, Siyu
    Wang, Junying
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2006, 78B (01) : 47 - 55
  • [45] Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering
    Venkatesan, Jayachandran
    Ryu, BoMi
    Sudha, P. N.
    Kim, Se-Kwon
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 50 (02) : 393 - 402
  • [46] Preparation and characterization of glass–ceramic reinforced alginate scaffolds for bone tissue engineering
    Ashley Thomas
    Eldin Johnson
    Ashish K. Agrawal
    Japes Bera
    Journal of Materials Research, 2019, 34 : 3798 - 3809
  • [47] Electrochemical preparation and characterization of PNIPAM-HAp scaffolds for bone tissue engineering
    Ribeiro, Charlene Aparecida
    Surmani Martins, Marcos Vinicius
    Bressiani, Ana Helena
    Bressiani, Jose Carlos
    Leyva, Maria Elena
    Alencar de Queiroz, Alvaro Antonio
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 81 : 156 - 166
  • [48] Preparation and characterization of hydroxyapatite/bacterial cellulose nanocomposite scaffolds for bone tissue engineering
    Jiang, Hongjiang
    Wang, Yulin
    Jia, Shiru
    Huang, Yuan
    He, Fang
    Wan, Yizao
    BIOCERAMICS, VOL 19, PTS 1 AND 2, 2007, 330-332 : 923 - +
  • [49] Nanohydroxyapatite-Nanocellulose composites as bioactive scaffolds for applications in bone tissue regeneration
    Laboy, Simara
    Rivera, Cristina
    Nicolau, Eduardo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [50] Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering
    Kara, Aylin
    Tamburaci, Sedef
    Tihminlioglu, Funda
    Havitcioglu, Hasan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 130 : 266 - 279