Coupling a Germanium Hut Wire Hole Quantum Dot to a Superconducting Microwave Resonator

被引:34
|
作者
Li, Yan [1 ,2 ]
Li, Shu-Xiao [1 ,2 ]
Gao, Fei [3 ,4 ,5 ]
Li, Hai-Ou [1 ,2 ]
Xu, Gang [1 ,2 ]
Wang, Ke [1 ,2 ]
Liu, Di [1 ,2 ]
Cao, Gang [1 ,2 ]
Xiao, Ming [1 ,2 ]
Wang, Ting [3 ,4 ,5 ]
Zhang, Jian-Jun [3 ,4 ,5 ]
Guo, Guang-Can [1 ,2 ]
Guo, Guo-Ping [1 ,2 ]
机构
[1] Univ Sci & Technol China, CAS, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Chinese Acad Sci, Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Ge hut wire; hole quantum dot; resonator; microwave; SPIN QUBIT; ELECTRODYNAMICS; COHERENCE; ELECTRON; CHARGE;
D O I
10.1021/acs.nanolett.8b00272
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Realizing a strong coupling between spin and resonator is an important issue for scalable quantum computation in semiconductor systems. Benefiting from the advantages of a strong spin-orbit coupling strength and long coherence time, the Ge hut wire, which is proposed to be site-controlled grown for scalability, is considered to be a promising candidate to achieve this goal. Here we present a hybrid architecture in which an on-chip superconducting microwave resonator is coupled to the holes in a Ge quantum dot. The charge stability diagram can be obtained from the amplitude and phase responses of the resonator independently from the DC transport measurement. Furthermore, we estimate the hole-resonator coupling rate of g(c)/2 pi = 148 MHz in the single quantum dot-resonator system and estimate the spin resonator coupling rate g(s)/2 pi to be in the range 2-4 MHz. We anticipate that strong coupling between hole spins and microwave photons in a Ge hut wire is feasible with optimized schemes in the future.
引用
收藏
页码:2091 / 2097
页数:7
相关论文
共 50 条
  • [41] Hybrid atom-photon quantum gate in a superconducting microwave resonator
    Pritchard, J.D.
    Isaacs, J.A.
    Beck, M.A.
    McDermott, R.
    Saffman, M.
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2014, 89 (01):
  • [42] Hybrid atom-photon quantum gate in a superconducting microwave resonator
    Pritchard, J. D.
    Isaacs, J. A.
    Beck, M. A.
    McDermott, R.
    Saffman, M.
    [J]. PHYSICAL REVIEW A, 2014, 89 (01):
  • [43] Quantum-circuit refrigeration of a superconducting microwave resonator well below a single quantum
    Viitanen, Arto
    Morstedt, Timm
    Teixeira, Wallace S.
    Tiiri, Maaria
    Rabina, Jukka
    Silveri, Matti
    Mottonen, Mikko
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [44] A superconducting resonator designed for coupling to spin based qubits in quantum dots
    Allison, G.
    Oiwa, A.
    Kumar, S.
    DiVincenzo, D.
    Ketchen, M.
    Hirakawa, K.
    Takayanagi, H.
    Tarucha, S.
    [J]. QUANTUM DOTS 2010, 2010, 245
  • [45] Coupling a Quantum Dot, Fermionic Leads, and a Microwave Cavity on a Chip
    Delbecq, M. R.
    Schmitt, V.
    Parmentier, F. D.
    Roch, N.
    Viennot, J. J.
    Feve, G.
    Huard, B.
    Mora, C.
    Cottet, A.
    Kontos, T.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (25)
  • [46] Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity
    Singh, V.
    Bosman, S. J.
    Schneider, B. H.
    Blanter, Y. M.
    Castellanos-Gomez, A.
    Steele, G. A.
    [J]. NATURE NANOTECHNOLOGY, 2014, 9 (10) : 820 - 824
  • [47] Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity
    V. Singh
    S. J. Bosman
    B. H. Schneider
    Y. M. Blanter
    A. Castellanos-Gomez
    G. A. Steele
    [J]. Nature Nanotechnology, 2014, 9 : 820 - 824
  • [48] Dispersively Probed Microwave Spectroscopy of a Silicon Hole Double Quantum Dot
    Ezzouch, Rami
    Zihlmann, Simon
    Michal, Vincent P.
    Li, Jing
    Apra, Agostino
    Bertrand, Benoit
    Hutin, Louis
    Vinet, Maud
    Urdampilleta, Matias
    Meunier, Tristan
    Jehl, Xavier
    Niquet, Yann-Michel
    Sanquer, Marc
    De Franceschi, Silvano
    Maurand, Romain
    [J]. PHYSICAL REVIEW APPLIED, 2021, 16 (03)
  • [49] Superconducting cavity resonator with a metallic tip for realizing strong coupling between superconducting qubits and microwave photons
    Kitano, H.
    Otal, K.
    Maeda, A.
    [J]. LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 943 - +
  • [50] Floquet Spectroscopy of a Strongly Driven Quantum Dot Charge Qubit with a Microwave Resonator
    Koski, J., V
    Landig, A. J.
    Palyi, A.
    Scarlino, P.
    Reichl, C.
    Wegscheider, W.
    Burkard, G.
    Wallraff, A.
    Ensslin, K.
    Ihn, T.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (04)