A SUBSPACE MODIFIED PRP METHOD FOR LARGE-SCALE NONLINEAR BOX-CONSTRAINED OPTIMIZATION

被引:1
|
作者
Cheng, Wanyou [1 ]
机构
[1] Dongguan Univ Technol, Coll Comp, Dongguan 523000, Peoples R China
关键词
Box-constrained optimization; Global convergence; PRP method; PROJECTED GRADIENT METHODS; SIMPLE BOUNDS; ALGORITHM; CONVERGENCE; PROGRAMS;
D O I
10.1080/01630563.2012.673216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we first propose a feasible steepest descent direction for box-constrained optimization. By the use of the direction and recently developed modified PRP method, we propose a subspace modified PRP method for box-constrained optimization. Under appropriate conditions, we show that the method is globally convergent. Numerical experiments are presented using box-constrained problems in the CUTEr test problem libraries.
引用
收藏
页码:1372 / 1385
页数:14
相关论文
共 50 条
  • [41] LARGE-SCALE LINEARLY CONSTRAINED OPTIMIZATION
    MURTAGH, BA
    SAUNDERS, MA
    [J]. MATHEMATICAL PROGRAMMING, 1978, 14 (01) : 41 - 72
  • [42] AN ITERATIVE METHOD USING BOUNDARY DISTANCE FOR BOX-CONSTRAINED NONLINEAR SEMIDEFINITE PROGRAMS
    Komatsu, Akihiko
    Yamashita, Makoto
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2018, 14 (01): : 77 - 99
  • [43] A Limited Memory Gradient Projection Method for Box-Constrained Quadratic Optimization Problems
    Crisci, Serena
    Porta, Federica
    Ruggiero, Valeria
    Zanni, Luca
    [J]. NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT I, 2020, 11973 : 161 - 176
  • [44] A modification of the alpha BB method for box-constrained optimization and an application to inverse kinematics
    Eichfelder, Gabriele
    Gerlach, Tobias
    Sumi, Susanne
    [J]. EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2016, 4 (01) : 93 - 121
  • [45] On a Box-Constrained Linear Symmetric Cone Optimization Problem
    Xu, Yi
    Yan, Xihong
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 181 (03) : 946 - 971
  • [46] The convergence of a new method for large-scale box constrained variational inequality problem
    Zhu, Lin
    [J]. FUZZY SYSTEM AND DATA MINING, 2016, 281 : 187 - 194
  • [47] Reformulation of SAT into a Polynomial Box-Constrained Optimization Problem
    Jacquet, Stephane
    Halle, Sylvain
    [J]. INTEGRATED FORMAL METHODS, IFM 2020, 2020, 12546 : 387 - 394
  • [48] Fortran subroutines for generating box-constrained optimization problems
    Facchinei, F
    Judice, J
    Soares, J
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (03): : 448 - 450
  • [49] On a Box-Constrained Linear Symmetric Cone Optimization Problem
    Yi Xu
    Xihong Yan
    [J]. Journal of Optimization Theory and Applications, 2019, 181 : 946 - 971
  • [50] Stopping rules for box-constrained stochastic global optimization
    Lagaris, I. E.
    Tsoulos, I. G.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) : 622 - 632