Polarization properties of solid-state organic lasers

被引:21
|
作者
Gozhyk, I. [1 ]
Clavier, G. [2 ]
Meallet-Renault, R. [2 ]
Dvorko, M. [2 ]
Pansu, R. [2 ]
Audibert, J. -F. [2 ]
Brosseau, A. [2 ]
Lafargue, C. [1 ]
Tsvirkun, V. [1 ]
Lozenko, S. [1 ]
Forget, S. [3 ]
Chenais, S. [3 ]
Ulysse, C. [4 ]
Zyss, J. [1 ]
Lebental, M. [1 ]
机构
[1] Ecole Normale Super, Lab Photon Quant & Mol, CNRS UMR 8537, Inst Alembert FR 3242, F-94235 Cachan, France
[2] Ecole Normale Super, Lab Photophys & Photochim Supramol & Macromol, CNRS UMR 8531, Inst Alembert FR 3242, F-94235 Cachan, France
[3] Univ Paris 13, Lab Phys Lasers, CNRS UMR 7538, F-93430 Villetaneuse, France
[4] CNRS UPR20, Lab Photon & Nanostruct, F-91460 Marcoussis, France
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 04期
关键词
WAVE-GUIDE; OPTICAL ANISOTROPY; LASING ACTION; THIN-FILMS; EMISSION; ORIENTATION; AMPLIFIERS; MODES;
D O I
10.1103/PhysRevA.86.043817
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The polarization states of lasers are crucial issues both for practical applications and fundamental research. In general, they depend in a combined manner on the properties of the gain material and on the structure of the electromagnetic modes. In this paper, we address this issue in the case of solid-state organic lasers, a technology which enables one to vary independently gain and mode properties. Different kinds of resonators are investigated: in-plane microresonators with Fabry-Perot, square, pentagon, stadium, disk, and kite shapes, and external vertical resonators. The degree of polarization P is measured in each case. It is shown that although transverse electric modes prevail generally (P > 0), the kite-shaped microlaser generates negative values for P (i.e., a flip of the dominant polarization which becomes mostly transverse magnetic polarized). In general, we demonstrate that both the pump polarization and the resonator geometry can be used to tailor the polarization of organic lasers. With this aim in view, we, at last, investigate two other degrees of freedom, namely upon using resonant energy transfer and upon pumping the laser dye to a higher excited state. We then demonstrate that significantly lower P factors can be obtained.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Inkjet-printed vertically emitting solid-state organic lasers
    Mhibik, Oussama
    Chenais, Sebastien
    Forget, Sebastien
    Defranoux, Christophe
    Sanaur, Sebastien
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (17)
  • [42] Recent Advances in 1D Organic Solid-State Lasers
    Wei, Guo-Qing
    Wang, Xue-Dong
    Liao, Liang-Sheng
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (32)
  • [43] Thermal effects in thin-film organic solid-state lasers
    Zhao, Zhuang
    Mhibik, Oussama
    Leang, Tatiana
    Forget, Sebastien
    Chenais, Sebastien
    OPTICS EXPRESS, 2014, 22 (24): : 30092 - 30107
  • [44] The promise of cryogenic solid-state lasers
    Brown, DC
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2005, 11 (03) : 587 - 599
  • [45] SOLID-STATE LASERS BLANKET THE SPECTRUM
    MOODY, SE
    LOWENTHAL, DD
    EWING, JJ
    PHOTONICS SPECTRA, 1993, 27 (01) : 79 - 80
  • [46] Solid-state lasers: status and future
    Huber, Guenter
    Kraenkel, Christian
    Petermann, Klaus
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (11) : B93 - B105
  • [47] How solid-state lasers work
    Hargis, D
    R&D MAGAZINE, 2001, 43 (06): : 33 - 33
  • [48] RESONATOR LOSSES IN SOLID-STATE LASERS
    KALININ, YA
    MAK, AA
    STEPANOV, AI
    SOVIET PHYSICS TECHNICAL PHYSICS-USSR, 1970, 14 (09): : 1255 - +
  • [49] Ultrabroadband infrared solid-state lasers
    Sorokin, E
    Naumov, S
    Sorokina, IT
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2005, 11 (03) : 690 - 712
  • [50] How solid-state lasers work
    Anon
    Research and Development (Barrington, Illinois), 2001, 43 (06):