Use of in situ cloud condensation nuclei, extinction, and aerosol size distribution measurements to test a method for retrieving cloud condensation nuclei profiles from surface measurements

被引:29
|
作者
Ghan, SJ [1 ]
Rissman, TA
Elleman, R
Ferrare, RA
Turner, D
Flynn, C
Wang, J
Ogren, J
Hudson, J
Jonsson, HH
VanReken, T
Flagan, RC
Seinfeld, JH
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
[4] NASA, Langley Res Ctr, Hampton, VA 23681 USA
[5] Brookhaven Natl Lab, Upton, NY 11973 USA
[6] NOAA, Climate Monitoring & Diagnost Lab, Boulder, CO 80303 USA
[7] Desert Res Inst, Reno, NV 89512 USA
[8] USN, Postgrad Sch, Monterey, CA 93943 USA
关键词
D O I
10.1029/2004JD005752
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic
    Lenhardt, Emily D.
    Gao, Lan
    Redemann, Jens
    Xu, Feng
    Burton, Sharon P.
    Cairns, Brian
    Chang, Ian
    Ferrare, Richard A.
    Hostetler, Chris A.
    Saide, Pablo E.
    Howes, Calvin
    Shinozuka, Yohei
    Stamnes, Snorre
    Kacarab, Mary
    Dobracki, Amie
    Wong, Jenny
    Freitag, Steffen
    Nenes, Athanasios
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2023, 16 (07) : 2037 - 2054
  • [32] Aerosol Chemistry Resolved by Mass Spectrometry: Linking Field Measurements of Cloud Condensation Nuclei Activity to Organic Aerosol Composition
    Vogel, Alexander L.
    Schneider, Johannes
    Mueller-Tautges, Christina
    Phillips, Gavin J.
    Poehlker, Mira L.
    Rose, Diana
    Zuth, Christoph
    Makkonen, Ulla
    Hakola, Hannele
    Crowley, John N.
    Andreae, Meinrat O.
    Poeschl, Ulrich
    Hoffmann, Thorsten
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (20) : 10823 - 10832
  • [33] A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network
    Paramonov, M.
    Kerminen, V. -M.
    Gysel, M.
    Aalto, P. P.
    Andreae, M. O.
    Asmi, E.
    Baltensperger, U.
    Bougiatioti, A.
    Brus, D.
    Frank, G. P.
    Good, N.
    Gunthe, S. S.
    Hao, L.
    Irwin, M.
    Jaatinen, A.
    Juranyi, Z.
    King, S. M.
    Kortelainen, A.
    Kristensson, A.
    Lihavainen, H.
    Kulmala, M.
    Lohmann, U.
    Martin, S. T.
    McFiggans, G.
    Mihalopoulos, N.
    Nenes, A.
    O'Dowd, C. D.
    Ovadnevaite, J.
    Petaja, T.
    Poschl, U.
    Roberts, G. C.
    Rose, D.
    Svenningsson, B.
    Swietlicki, E.
    Weingartner, E.
    Whitehead, J.
    Wiedensohler, A.
    Wittbom, C.
    Sierau, B.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (21) : 12211 - 12229
  • [34] Hygroscopic mixing state of urban aerosol derived from size-resolved cloud condensation nuclei measurements during the MEGAPOLI campaign in Paris
    Juranyi, Z.
    Tritscher, T.
    Gysel, M.
    Laborde, M.
    Gomes, L.
    Roberts, G.
    Baltensperger, U.
    Weingartner, E.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (13) : 6431 - 6446
  • [35] RELATION BETWEEN SIZE-DISTRIBUTION OF CONDENSATION NUCLEI AND LARGE CLOUD DROPS
    SMIRNOV, VI
    SERGEEV, BN
    DOKLADY AKADEMII NAUK SSSR, 1973, 208 (01): : 87 - 90
  • [36] SIZE DISTRIBUTION OF LARGE CLOUD DROPS GROWN UP ON HYGROSCOPIC CONDENSATION NUCLEI
    SMIRNOV, VI
    SERGEEV, BN
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1973, 9 (12): : 1290 - 1302
  • [37] MEASUREMENTS OF CLOUD CONDENSATION NUCLEI SPECTRA WITHIN MARITIME CUMULUS CLOUD DROPLETS - IMPLICATIONS FOR MIXING PROCESSES
    TWOHY, CH
    HUDSON, JG
    JOURNAL OF APPLIED METEOROLOGY, 1995, 34 (04): : 815 - 833
  • [38] Predicting cloud condensation nuclei number concentration based on conventional measurements of aerosol properties in the North China Plain
    Zhang, Yanyan
    Tao, Jiangchuan
    Ma, Nan
    Kuang, Ye
    Wang, Zhibin
    Cheng, Peng
    Xu, Wanyun
    Yang, Wenda
    Zhang, Shaobin
    Xiong, Chun
    Dong, Wenlin
    Xie, Linhong
    Sun, Yele
    Fu, Pingqing
    Zhou, Guangsheng
    Cheng, Yafang
    Su, Hang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 719
  • [39] Quantifying structural errors in cloud condensation nuclei activity from reduced representation of aerosol size distributions
    Fierce, Laura
    Yao, Yu
    Easter, Richard
    Ma, Po-Lun
    Sun, Jian
    Wan, Hui
    Zhang, Kai
    JOURNAL OF AEROSOL SCIENCE, 2024, 181
  • [40] The surface tension and cloud condensation nuclei (CCN) activation of sea spray aerosol particles
    Kleinheins, Judith
    Shardt, Nadia
    Lohmann, Ulrike
    Marcolli, Claudia
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2025, 25 (02) : 881 - 903