Linear Correlation-Based Feature Selection for Network Intrusion Detection Model

被引:0
|
作者
Eid, Heba F. [1 ,5 ]
Hassanien, Aboul Ella [2 ,5 ]
Kim, Tai-hoon [3 ]
Banerjee, Soumya [4 ,5 ]
机构
[1] Al Azhar Univ, Fac Sci, Cairo, Egypt
[2] Cairo Univ, Fac Comp & Informat, Giza, Egypt
[3] Hannam Univ, Daejeon, South Korea
[4] Birla Inst Technol, Dept CS, Mesra, India
[5] SRGE, Giza, Egypt
关键词
Network security; Data Reduction; Feature selection; Linear Correlation; Intrusion detection; RELEVANCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Feature selection is a preprocessing phase to machine learning, which leads to increase the classification accuracy and reduce its complexity. However, the increase of data dimensionality poses a challenge to many existing feature selection methods. This paper formulates and validates a method for selecting,optimal feature subset based on the analysis of the Pearson correlation coefficients. We adopt the correlation analysis between two variables as a feature goodness measure. Where, a feature is good if it is highly correlated to the class and is low correlated to the other features. To evaluate the proposed Feature selection method, experiments are applied on NSL-KDD dataset. The experiments shows that, the number of features is reduced from 41 to 17 features, which leads to improve the classification accuracy to 99.1%. Also,The efficiency of the proposed linear correlation feature selection method is demonstrated through extensive comparisons with other well known feature selection methods.
引用
收藏
页码:240 / +
页数:3
相关论文
共 50 条
  • [31] Ant colony optimization based network intrusion feature selection and detection
    Gao, HH
    Yang, HH
    Wang, XY
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 3871 - 3875
  • [32] Selection and detection of network intrusion feature based on BPSO-SVM
    College of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
    不详
    Jisuanji Gongcheng, 2006, 8 (37-39):
  • [33] Majority Voting and Feature Selection Based Network Intrusion Detection System
    Patil, Dharmaraj R.
    Pattewar, Tareek M.
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2022, 9 (06):
  • [34] Network Intrusion Detection Based on Feature Selection and Hybrid Metaheuristic Optimization
    Alkanhel, Reem
    El-kenawy, El-Sayed M.
    Abdelhamid, Abdelaziz A.
    Ibrahim, Abdelhameed
    Alohali, Manal Abdullah
    Abotaleb, Mostafa
    Khafaga, Doaa Sami
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 2677 - 2693
  • [35] Network Intrusion Detection Based on Novel Feature Selection Model and Various Recurrent Neural Networks
    Thi-Thu-Huong Le
    Kim, Yongsu
    Kim, Howon
    APPLIED SCIENCES-BASEL, 2019, 9 (07):
  • [36] Correlation-based feature selection strategy in neural classification
    Michalak, Krzysztof
    Kwasnicka, Halina
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 741 - 746
  • [37] Feature Subset Selection Hybrid Deep Belief Network Based Cybersecurity Intrusion Detection Model
    Alissa, Khalid A.
    Shaiba, Hadil
    Gaddah, Abdulbaset
    Yafoz, Ayman
    Alsini, Raed
    Alghushairy, Omar
    Aziz, Amira Sayed A.
    Al Duhayyim, Mesfer
    ELECTRONICS, 2022, 11 (19)
  • [38] Hybrid Classification Model of Correlation-based Feature Selection and Support Vector Machine
    Dubey, Vimal Kumar
    Saxena, Amit Kumar
    2016 IEEE INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN ADVANCED COMPUTING (ICCTAC), 2016,
  • [39] Investigating the effect of correlation-based feature selection on the performance of neural network in reservoir characterization
    Akande, Kabiru O.
    Owolabi, Taoreed O.
    Olatunji, Sunday O.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 27 : 98 - 108
  • [40] Enhancing Big Data Feature Selection Using a Hybrid Correlation-Based Feature Selection
    Mohamad, Masurah
    Selamat, Ali
    Krejcar, Ondrej
    Crespo, Ruben Gonzalez
    Herrera-Viedma, Enrique
    Fujita, Hamido
    ELECTRONICS, 2021, 10 (23)