Bootstrap inference for multiple imputation under uncongeniality and misspecification

被引:65
|
作者
Bartlett, Jonathan W. [1 ]
Hughes, Rachael A. [2 ,3 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Bristol, Bristol Med Sch, Populat Hlth Sci, Bristol, Avon, England
[3] Univ Bristol, MRC Integrat Epidemiol Unit, Bristol, Avon, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
Multiple imputation; bootstrap; congeniality; ACCESSIBLE ASSUMPTIONS; LONGITUDINAL TRIALS; FRAMEWORK; RELEVANT;
D O I
10.1177/0962280220932189
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Multiple imputation has become one of the most popular approaches for handling missing data in statistical analyses. Part of this success is due to Rubin's simple combination rules. These give frequentist valid inferences when the imputation and analysis procedures are so-called congenial and the embedding model is correctly specified, but otherwise may not. Roughly speaking, congeniality corresponds to whether the imputation and analysis models make different assumptions about the data. In practice, imputation models and analysis procedures are often not congenial, such that tests may not have the correct size, and confidence interval coverage deviates from the advertised level. We examine a number of recent proposals which combine bootstrapping with multiple imputation and determine which are valid under uncongeniality and model misspecification. Imputation followed by bootstrapping generally does not result in valid variance estimates under uncongeniality or misspecification, whereas certain bootstrap followed by imputation methods do. We recommend a particular computationally efficient variant of bootstrapping followed by imputation.
引用
收藏
页码:3533 / 3546
页数:14
相关论文
共 50 条
  • [31] Alternative Multiple Imputation Inference for Categorical Structural Equation Modeling
    Chung, Seungwon
    Cai, Li
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2018, 53 (01) : 148 - 148
  • [32] A semiparametric multiply robust multiple imputation method for causal inference
    Gochanour, Benjamin
    Chen, Sixia
    Beebe, Laura
    Haziza, David
    [J]. METRIKA, 2023, 86 (05) : 517 - 542
  • [33] Alternative Multiple Imputation Inference for Mean and Covariance Structure Modeling
    Lee, Taehun
    Cai, Li
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2012, 37 (06) : 675 - 702
  • [34] Discussion: Efficiency and self-efficiency with multiple imputation inference
    Meng, XL
    Romero, M
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2003, 71 (03) : 607 - 618
  • [35] Multiple Imputation Inference with Integer-Valued Point Estimates
    Liu, Bo
    Reiter, Jerome P.
    [J]. AMERICAN STATISTICIAN, 2022, 76 (04): : 323 - 328
  • [36] A semiparametric multiply robust multiple imputation method for causal inference
    Benjamin Gochanour
    Sixia Chen
    Laura Beebe
    David Haziza
    [J]. Metrika, 2023, 86 : 517 - 542
  • [37] Combining multiple imputation and bootstrap in the analysis of cost-effectiveness trial data
    Brand, Jaap
    van Buuren, Stef
    le Cessie, Saskia
    van den Hout, Wilbert
    [J]. STATISTICS IN MEDICINE, 2019, 38 (02) : 210 - 220
  • [38] BOOTSTRAP INFERENCE FOR MULTIPLE CHANGE-POINTS IN TIME SERIES
    Ng, Wai Leong
    Pan, Shenyi
    Yau, Chun Yip
    [J]. ECONOMETRIC THEORY, 2022, 38 (04) : 752 - 792
  • [39] On hypothesis testing inference in location-scale models under model misspecification
    Queiroz, Francisco F.
    Lemonte, Artur J.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (11) : 2080 - 2097
  • [40] Errors in Statistical Inference Under Model Misspecification: Evidence, Hypothesis Testing, and AIC
    Dennis, Brian
    Ponciano, Jose Miguel
    Taper, Mark L.
    Lele, Subhash R.
    [J]. FRONTIERS IN ECOLOGY AND EVOLUTION, 2019, 7