Bootstrap inference for multiple imputation under uncongeniality and misspecification

被引:65
|
作者
Bartlett, Jonathan W. [1 ]
Hughes, Rachael A. [2 ,3 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Bristol, Bristol Med Sch, Populat Hlth Sci, Bristol, Avon, England
[3] Univ Bristol, MRC Integrat Epidemiol Unit, Bristol, Avon, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
Multiple imputation; bootstrap; congeniality; ACCESSIBLE ASSUMPTIONS; LONGITUDINAL TRIALS; FRAMEWORK; RELEVANT;
D O I
10.1177/0962280220932189
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Multiple imputation has become one of the most popular approaches for handling missing data in statistical analyses. Part of this success is due to Rubin's simple combination rules. These give frequentist valid inferences when the imputation and analysis procedures are so-called congenial and the embedding model is correctly specified, but otherwise may not. Roughly speaking, congeniality corresponds to whether the imputation and analysis models make different assumptions about the data. In practice, imputation models and analysis procedures are often not congenial, such that tests may not have the correct size, and confidence interval coverage deviates from the advertised level. We examine a number of recent proposals which combine bootstrapping with multiple imputation and determine which are valid under uncongeniality and model misspecification. Imputation followed by bootstrapping generally does not result in valid variance estimates under uncongeniality or misspecification, whereas certain bootstrap followed by imputation methods do. We recommend a particular computationally efficient variant of bootstrapping followed by imputation.
引用
收藏
页码:3533 / 3546
页数:14
相关论文
共 50 条
  • [1] Bootstrap inference when using multiple imputation
    Schomaker, Michael
    Heumann, Hristian
    [J]. STATISTICS IN MEDICINE, 2018, 37 (14) : 2252 - 2266
  • [2] Bootstrap inference for weighted nearest neighbors imputation
    Faisal, Shahla
    Heumann, Christian
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (06) : 2842 - 2857
  • [3] BOOTSTRAP CONFIDENCE SETS UNDER MODEL MISSPECIFICATION
    Spokoiny, Vladimir
    Zhilova, Mayya
    [J]. ANNALS OF STATISTICS, 2015, 43 (06): : 2653 - 2675
  • [4] Variable selection under multiple imputation using the bootstrap in a prognostic study
    Heymans, Martijn W.
    van Buuren, Stef
    Knol, Dirk L.
    van Mechelen, Willem
    de Vet, Henrica C. W.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2007, 7 (1)
  • [5] Variable selection under multiple imputation using the bootstrap in a prognostic study
    Martijn W Heymans
    Stef van Buuren
    Dirk L Knol
    Willem van Mechelen
    Henrica CW de Vet
    [J]. BMC Medical Research Methodology, 7
  • [6] Inference for Iterated GMM Under Misspecification
    Hansen, Bruce E.
    Lee, Seojeong
    [J]. ECONOMETRICA, 2021, 89 (03) : 1419 - 1447
  • [7] Higher order properties of the wild bootstrap under misspecification
    Kline, Patrick
    Santos, Andres
    [J]. JOURNAL OF ECONOMETRICS, 2012, 171 (01) : 54 - 70
  • [8] Nonparametric Markov chain bootstrap for multiple imputation
    Zhang, LC
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (02) : 343 - 353
  • [9] Applying the rescaling bootstrap under imputation: a simulation study
    Bruch, Christian
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (04) : 641 - 659
  • [10] Overview of multiple imputation and repeated-imputation inference (RII) techniques
    Montalto, CP
    Sung, J
    [J]. CONSUMER INTERESTS ANNUAL, VOL 43: 43RD ANNUAL CONFERENCE OF THE AMERICAN COUNCIL ON CONSUMER INTERESTS, 1997, : 167 - 167