Quantified Propositional Logic and Translations

被引:8
|
作者
Chen Bo [1 ]
Wu Cheng [2 ]
Zhang Bing [2 ]
Ma Changhui [1 ]
Sui Yuefei [3 ]
机构
[1] State Gird Shandong Elect Power Res Inst, Jinan, Shandong, Peoples R China
[2] State Gird Shandong Elect Power Co, Jinan, Shandong, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
quantifier; model; the soundness; the completeness; translation;
D O I
10.1109/SKG.2017.00010
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In traditional propositional logic(PL), the atomic part of formulas are proposition symbols. In first-order logic(FL) the atomic part of formulas are terms, predicates are relations among terms, and quantifiers for all, there exists are introduced to express the binding of variables ranging over a domain of discourse. We propose a new kind of logics the quantified propositional logic(QL), QL's atomic formulas are in the forms of c, X (p), F(X), where c,p are a propositional symbol, X is a first-order predicate variable and F is a second order predicate. The quantifiers V, are applied on first-order predicate variables. An axiomatic system is given so that the system is sound and complete with the quantified propositional logic. The translations about the quantified propositional logic are given.
引用
收藏
页码:8 / 14
页数:7
相关论文
共 50 条
  • [31] PROPOSITIONAL LOGIC PROGRAMMING
    TYUGU, EH
    COMPUTERS AND ARTIFICIAL INTELLIGENCE, 1989, 8 (04): : 357 - 368
  • [32] Propositional discourse logic
    Dyrkolbotn, Sjur
    Walicki, Michal
    SYNTHESE, 2014, 191 (05) : 863 - 899
  • [33] PHILOSOPHICAL LOGIC IN A FRAMEWORK OF PROPOSITIONAL LOGIC
    Damboeck, Christian
    LOGIQUE ET ANALYSE, 2009, (205) : 21 - 37
  • [34] Comments on predicative logic (Propositional logic)
    Ferreira, Fernando
    JOURNAL OF PHILOSOPHICAL LOGIC, 2006, 35 (01) : 1 - 8
  • [35] EQUATIONAL PROPOSITIONAL LOGIC
    GRIES, D
    SCHNEIDER, FB
    INFORMATION PROCESSING LETTERS, 1995, 53 (03) : 145 - 152
  • [36] Nonmonotonic propositional logic
    Li, Wei
    Sui, Yuefei
    Wang, Yuhui
    FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (03)
  • [37] PEIRCE PROPOSITIONAL LOGIC
    DIPERT, RR
    REVIEW OF METAPHYSICS, 1981, 34 (03): : 569 - 595
  • [38] FUZZY PROPOSITIONAL LOGIC
    SAVINOV, AA
    FUZZY SETS AND SYSTEMS, 1993, 60 (01) : 9 - 17
  • [39] Contraction in propositional logic
    Caridroit, Thomas
    Konieczny, Sebastien
    Marquis, Pierre
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 80 : 428 - 442
  • [40] Propositional lax logic
    Fairtlough, M
    Mendler, M
    INFORMATION AND COMPUTATION, 1997, 137 (01) : 1 - 33