Deep Semantic Lane Segmentation for Mapless Driving

被引:0
|
作者
Meyer, Annika [1 ]
Salscheider, N. Ole [1 ]
Orzechowski, Piotr F. [1 ]
Stiller, Christoph [2 ]
机构
[1] FZI Res Ctr Informat Technol, Karlsruhe, Germany
[2] KIT, Inst Measurement & Control Syst, Karlsruhe, Germany
关键词
ROAD; CONTEXT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In autonomous driving systems a strong relation to highly accurate maps is taken to be inevitable, although street scenes change frequently. However, a preferable system would be to equip the automated cars with a sensor system that is able to navigate urban scenarios without an accurate map. We present a novel pipeline using a deep neural network to detect lane semantics and topology given RGB images. On the basis of this classification, the information about the road scene can be extracted just from the sensor setup supporting mapless autonomous driving. In addition to superseding the huge effort of creating and maintaining highly accurate maps, our system reduces the need for precise localization. Using an extended Cityscapes dataset, we show accurate ego lane detection including lane semantics on challenging scenarios for autonomous driving.
引用
收藏
页码:869 / 875
页数:7
相关论文
共 50 条
  • [31] Deep Video Dehazing With Semantic Segmentation
    Ren, Wenqi
    Zhang, Jingang
    Xu, Xiangyu
    Ma, Lin
    Cao, Xiaochun
    Meng, Gaofeng
    Liu, Wei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) : 1895 - 1908
  • [32] Deep Hierarchical Parsing for Semantic Segmentation
    Sharma, Abhishek
    Tuzel, Oncel
    Jacobs, David W.
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 530 - 538
  • [33] Lane detection for automated driving using Deep Learning
    Schmidt, Manuel
    Krueger, Martin
    Lienke, Christian
    Oeljeklaus, Malte
    Nattermann, Till
    Mohamed, Manoj
    Hoffmann, Frank
    Bertram, Torsten
    AT-AUTOMATISIERUNGSTECHNIK, 2019, 67 (10) : 866 - 878
  • [34] Deep Structured Features for Semantic Segmentation
    Tschannen, Michael
    Cavigelli, Lukas
    Mentzer, Fabian
    Wiatowski, Thomas
    Benini, Luca
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 61 - 65
  • [35] Semantic Segmentation: A Zoology of Deep Architectures
    Artola, Aitor
    IMAGE PROCESSING ON LINE, 2023, 13 : 167 - 182
  • [36] Deep Semantic Segmentation of Angiogenesis Images
    Ibragimov, Alisher
    Senotrusova, Sofya
    Markova, Kseniia
    Karpulevich, Evgeny
    Ivanov, Andrei
    Tyshchuk, Elizaveta
    Grebenkina, Polina
    Stepanova, Olga
    Sirotskaya, Anastasia
    Kovaleva, Anastasiia
    Oshkolova, Arina
    Zementova, Maria
    Konstantinova, Viktoriya
    Kogan, Igor
    Selkov, Sergey
    Sokolov, Dmitry
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)
  • [37] Deep Context Modeling for Semantic Segmentation
    Kien Nguyen
    Fookes, Clinton
    Sridharan, Sridha
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 56 - 63
  • [38] Real-time Lane Detection Techniques Using Optimal Estimator and Deep Learning-based Lane Segmentation for Self-driving Vehicles
    Jo Y.-H.
    Lee D.-J.
    Journal of Institute of Control, Robotics and Systems, 2022, 28 (04) : 353 - 361
  • [39] Deep Vision: Lane Detection in ITS: A Deep Learning Segmentation Perspective
    Santhiya, P.
    Jebadurai, Immanuel JohnRaja
    Paulraj, Getzi Jeba Leelipushpam
    Jenefa, A.
    Karan, S. Kiruba
    Naveen, Edward, V
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 21 - 26
  • [40] Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges
    Feng, Di
    Haase-Schutz, Christian
    Rosenbaum, Lars
    Hertlein, Heinz
    Glaser, Claudius
    Timm, Fabian
    Wiesbeck, Werner
    Dietmayer, Klaus
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (03) : 1341 - 1360