Classification of Solar Wind With Machine Learning

被引:54
|
作者
Camporeale, Enrico [1 ]
Care, Algo [1 ]
Borovsky, Joseph E. [2 ]
机构
[1] Ctr Math & Comp Sci CWI, Amsterdam, Netherlands
[2] Ctr Space Plasma Phys, Space Sci Inst, Boulder, CO USA
关键词
GAUSSIAN-PROCESSES; GEOEFFECTIVENESS; CYCLE;
D O I
10.1002/2017JA024383
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a four-category classification algorithm for the solar wind, based on Gaussian Process. The four categories are the ones previously adopted in Xu and Borovsky (2015): ejecta, coronal hole origin plasma, streamer belt origin plasma, and sector reversal origin plasma. The algorithm is trained and tested on a labeled portion of the OMNI data set. It uses seven inputs: the solar wind speed V-sw, the temperature standard deviation sigma(T), the sunspot number R, the F-10.7 index, the Alfven speed v(A), the proton specific entropy S-p, and the proton temperature T-p compared to a velocity-dependent expected temperature. The output of the Gaussian Process classifier is a four-element vector containing the probabilities that an event (one reading from the hourly averaged OMNI database) belongs to each category. The probabilistic nature of the prediction allows for a more informative and flexible interpretation of the results, for instance, being able to classify events as "undecided." The new method has a median accuracy larger than 90% for all categories, even using a small set of data for training. The Receiver Operating Characteristic curve and the reliability diagram also demonstrate the excellent quality of this new method. Finally, we use the algorithm to classify a large portion of the OMNI data set, and we present for the first time transition probabilities between different solar wind categories. Such probabilities represent the "climatological" statistics that determine the solar wind baseline.
引用
收藏
页码:10910 / 10920
页数:11
相关论文
共 50 条
  • [1] Machine Learning Approach for Solar Wind Categorization
    Li, Hui
    Wang, Chi
    Tu, Cui
    Xu, Fei
    [J]. EARTH AND SPACE SCIENCE, 2020, 7 (05)
  • [2] Classification of Cassini's Orbit Regions as Magnetosphere, Magnetosheath, and Solar Wind via Machine Learning
    Yeakel, Kiley L.
    Vandegriff, Jon D.
    Garton, Tadhg M.
    Jackman, Caitriona M.
    Clark, George
    Vines, Sarah K.
    Smith, Andrew W.
    Kollmann, Peter
    [J]. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
  • [3] Zonda wind classification using machine learning algorithms
    Otero, Federico
    Araneo, Diego
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2021, 41 (S1) : E342 - E353
  • [4] Wind turbine contaminant classification using machine learning techniques
    Cummins, S.
    Campbell, J. N.
    Durkan, S. M.
    Somers, J.
    Finnegan, W.
    Goggins, J.
    Hayden, P.
    Murray, R.
    Burke, D.
    Lally, C.
    Alli, M. B.
    Varvarezos, L.
    Costello, J. T.
    [J]. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2023, 210
  • [5] Objectively Determining States of the Solar Wind Using Machine Learning
    Roberts, D. Aaron
    Karimabadi, Homa
    Sipes, Tamara
    Ko, Yuan-Kuen
    Lepri, Susan
    [J]. ASTROPHYSICAL JOURNAL, 2020, 889 (02):
  • [6] Classification Scheme for Solar Wind
    Veselovsky, I. S.
    Lukashenko, A. T.
    Kaportseva, K. B.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2018, 81 (06) : 766 - 770
  • [7] Classification Scheme for Solar Wind
    I. S. Veselovsky
    A. T. Lukashenko
    K. B. Kaportseva
    [J]. Physics of Atomic Nuclei, 2018, 81 : 766 - 770
  • [8] A machine learning-based image classification of silicon solar cells
    Verma, H.
    Siruvuri, S. D. V. S. S. Varma
    Budarapu, P. R.
    [J]. INTERNATIONAL JOURNAL OF HYDROMECHATRONICS, 2024, 7 (01) : 49 - 66
  • [9] Combined Optimization and Regression Machine Learning for Solar Irradiation and Wind Speed Forecasting
    Amoura, Yahia
    Torres, Santiago
    Lima, Jose
    Pereira, Ana I.
    [J]. OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2022, 2022, 1754 : 215 - 228
  • [10] Harmonics Forecasting of Wind and Solar Hybrid Model Based on Deep Machine Learning
    Al Hadi, Fawaz M.
    Aly, Hamed H.
    Little, Timothy
    [J]. IEEE ACCESS, 2023, 11 : 100438 - 100457