Optimal Transformer Modeling by Space Embedding for Ionospheric Total Electron Content Prediction

被引:7
|
作者
Lin, Mengying [1 ]
Zhu, Xuefen [1 ]
Tu, Gangyi [2 ]
Chen, Xiyaun [1 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, Nanjing 210096, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China
关键词
Predictive models; Autoregressive processes; Transformers; Task analysis; Mathematical models; Logic gates; Feature extraction; Ensemble model; self-attention mechanism; space embedding; total electron content (TEC); transformer structure; NEURAL-NETWORKS; GPS; CHINA; PERFORMANCE;
D O I
10.1109/TIM.2022.3211550
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Prediction of ionospheric total electron content (TEC) enables accurate ionospheric delay correction for global navigation satellite system (GNSS) services. Thus, it is crucial to extract the characteristics of the temporal periodicity and spatial correlation for TEC modeling and prediction. The self-attention mechanism of the transformer structure is utilized to capture the long-term characteristics of the TEC in China. The gated recurrent unit (GRU) network and long short-term memory (LSTM) were chosen for comparison because of their capability for nonlinear time series modeling. The results indicate that the proposed model outperforms LSTM by 23% from 2016 to 2018 and GRU by more than 4% from 2016 to 2017. In terms of small, moderate, and intense geomagnetic storms, the relative error at all involved latitude levels was reduced by 40%, 39%, and 5%, respectively, compared with GRU, as well as 44%, 47%, and 12%, respectively, compared with LSTM. Furthermore, the ensemble model (Ense-Trans) based on two proposed spatially embedded transformer models (Trans), compared with the original Trans model, reduced the relative error by 11.38%, 8.78%, and 11.78% in the summer, autumn, and winter of 2018, respectively. It is concluded that Trans has much better performance than GRU and LSTM, and Ense-Trans is better than Trans itself in terms of TEC prediction. This study will be of great significance for ionospheric real-time research and other space weather applications in the future.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Response of Ionospheric Total Electron Content to Convective Vortices
    V. E. Pronin
    V. A. Pilipenko
    V. I. Zakharov
    D. L. Murr
    V. A. Martines-Bedenko
    Cosmic Research, 2019, 57 : 69 - 78
  • [32] Ionospheric GNSS Total Electron Content for Tsunami Warning
    Liu, Jann-Yenq
    Lin, Chi-Yen
    Tsai, Yu-Lin
    Liu, Tien-Chi
    Hattori, Katsumi
    Sun, Yang-Yi
    Wu, Tso-Ren
    JOURNAL OF EARTHQUAKE AND TSUNAMI, 2019, 13 (5-6)
  • [33] Ionospheric total electron content response to solar eclipses
    Tsai, HF
    Liu, JY
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A6) : 12657 - 12668
  • [34] Towards Reliable Ionospheric Total Electron Content Nowcasting
    Zhukov, Aleksei
    Sidorov, Denis
    Yasyukevich, Yury
    Mylnikova, Anna
    2018 12TH INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY (ICST), 2018, : 299 - 302
  • [35] Response of Ionospheric Total Electron Content to Convective Vortices
    Pronin, V. E.
    Pilipenko, V. A.
    Zakharov, V. I.
    Murr, D. L.
    Martines-Bedenko, V. A.
    COSMIC RESEARCH, 2019, 57 (02) : 69 - 78
  • [36] Ionospheric total electron content: Global and hemispheric climatology
    Lean, J. L.
    Meier, R. R.
    Picone, J. M.
    Emmert, J. T.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [37] EFFECTS OF IONOSPHERIC STORMS ON THE TOTAL ELECTRON-CONTENT
    MUKASHEVA, SN
    DOKUCHAEVA, AV
    GEOMAGNETIZM I AERONOMIYA, 1990, 30 (03): : 435 - 439
  • [38] Pecularities of the Total Electron Content and Their Reflections in the Ionospheric Model
    Maltseva, O. A.
    Quang, T. Trinh
    PIERS 2010 XI'AN: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 793 - 796
  • [39] USTEC: a new product from the Space Environment Center characterizing the ionospheric total electron content
    Tim Fuller-Rowell
    GPS Solutions, 2005, 9 : 236 - 239
  • [40] Ionospheric total electron content: Spatial patterns of variability
    Lean, J. L.
    Meier, R. R.
    Picone, J. M.
    Sassi, F.
    Emmert, J. T.
    Richards, P. G.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (10) : 10367 - 10402