On Sampling, Anonymization, and Differential Privacy Or, K-Anonymization Meets Differential Privacy

被引:0
|
作者
Li, Ninghui [1 ]
Qardaji, Wahbeh [1 ]
Su, Dong [1 ]
机构
[1] Purdue Univ, 305 N Univ St, W Lafayette, IN 47907 USA
来源
7TH ACM SYMPOSIUM ON INFORMATION, COMPUTER AND COMMUNICATIONS SECURITY (ASIACCS 2012) | 2012年
基金
美国国家科学基金会;
关键词
Differential Privacy; Anonymization; Data Privacy; ANONYMITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper aims at answering the following two questions in privacy-preserving data analysis and publishing: What formal privacy guarantee (if any) does k-anonymization provide? How can we benefit from the adversary's uncertainty about the data? We have found that random sampling provides a connection that helps answer these two questions, as sampling can create uncertainty. The main result of the paper is that k-anonymization, when done "safely", and when preceded with a random sampling step, satisfies (epsilon, delta)-differential privacy with reasonable parameters. This result illustrates that "hiding in a crowd of k" indeed offers some privacy guarantees. We point out, however, that almost all existing k-anonymization algorithms in the literature are not "safe". Regarding the second question, we provide both positive and negative results. On the positive side, we show that adding a random-sampling pre-processing step to a differentially-private algorithm can greatly amplify the level of privacy protection. Hence, when given a dataset resulted from sampling, one can utilize a much large privacy budget. On the negative side, any privacy notion that takes advantage of the adversary's uncertainty, likely does not compose.
引用
收藏
页数:11
相关论文
共 50 条