Recursive algorithm for Hermite interpolation over a triangular grid

被引:5
|
作者
Habib, AW
Goldman, RN
Lyche, T
机构
[1] RICE UNIV,DEPT COMP SCI,HOUSTON,TX 77251
[2] INST INFORMAT,OSLO,NORWAY
关键词
bivariate interpolation; hermite; triangular grid; dynamic programming;
D O I
10.1016/0377-0427(96)00038-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A recursive algorithm for Hermite interpolation of bivariate data over triangular grids is presented. This interpolation algorithm has a dynamic programming flavor and it computes a single polynomial that interpolates the full set of data. The data we interpolate are partial derivatives and mixed partials up to some fixed order at the nodes of the grid. The interpolant is a polynomial with minimal degree bound when the order is identical for all nodes. The proposed interpolation algorithm is affinely invariant, has at least linear precision, is symmetric with respect to the grid directions and can reuse existing computations if points are added to the grid.
引用
收藏
页码:95 / 118
页数:24
相关论文
共 50 条
  • [41] MULTIDIMENSIONAL HERMITE INTERPOLATION
    Durakov, M. E.
    Leinartas, E. D.
    Tsikh, A. K.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 700 - 710
  • [42] On a Hermite interpolation on the sphere
    Zhang, Ming
    Liang, Xue-Zhang
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (05) : 666 - 674
  • [43] A note on Hermite interpolation
    Jakimovski, A.
    Leviatan, D.
    JAEN JOURNAL ON APPROXIMATION, 2018, 10 (01): : 147 - 153
  • [44] On Hermite interpolation in Rd
    Shekhtman, B
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 18 : 65 - 72
  • [45] On the Hermite interpolation polynomial
    Pop, Ovidiu T.
    Barbosu, Dan
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (01): : 104 - 109
  • [46] A note on the Hermite interpolation
    Mircea Ivan
    Numerical Algorithms, 2015, 69 : 517 - 522
  • [47] BARYCENTRIC HERMITE INTERPOLATION
    Sadiq, Burhan
    Viswanath, Divakar
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03): : A1254 - A1270
  • [48] GEOMETRIC HERMITE INTERPOLATION
    HOLLIG, K
    KOCH, J
    COMPUTER AIDED GEOMETRIC DESIGN, 1995, 12 (06) : 567 - 580
  • [49] Hermite interpolation on sphere
    Habib, Z
    Sakai, M
    Computer Graphics, Imaging and Vision: New Trends, 2005, : 416 - 421
  • [50] ON THE HERMITE INTERPOLATION POLYNOMIAL
    VALIAHO, H
    JOURNAL OF APPROXIMATION THEORY, 1984, 40 (04) : 391 - 392