Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography

被引:148
|
作者
Kirisli, H. A. [1 ,2 ]
Schaap, M. [1 ]
Metz, C. T. [1 ]
Dharampal, A. S. [3 ,4 ]
Meijboom, W. B. [4 ]
Papadopoulou, S. L. [3 ]
Dedic, A. [4 ]
Nieman, K. [3 ,4 ]
de Graaf, M. A. [6 ,7 ]
Meijs, M. F. L. [5 ]
Cramer, M. J. [5 ]
Broersen, A. [2 ]
Cetin, S. [12 ]
Eslami, A. [20 ,21 ]
Florez-Valencia, L. [16 ]
Lor, K. L. [13 ]
Matuszewski, B. [24 ]
Melki, I. [14 ,15 ]
Mohr, B. [11 ]
Oksuz, I. [18 ]
Shahzad, R. [1 ,9 ]
Wang, C. [19 ]
Kitslaar, P. H. [2 ]
Unal, G. [12 ]
Katouzian, A. [20 ,22 ]
Orkisz, M. [17 ]
Chen, C. M. [13 ]
Precioso, F. [23 ]
Najman, L. [14 ]
Masood, S. [11 ]
Unay, D. [18 ]
Van Vliet, L. [9 ]
Moreno, R. [19 ]
Goldenberg, R. [8 ]
Vucini, E. [10 ]
Krestin, G. P. [3 ]
Niessen, W. J. [1 ,9 ]
van Walsum, T. [1 ]
机构
[1] Erasmus MC, Biomed Imaging Grp Rotterdam, Dept Radiol & Med Informat, Rotterdam, Netherlands
[2] Leiden UMC, Dept Radiol, Div Image Proc, Leiden, Netherlands
[3] Erasmus MC, Dept Radiol, Rotterdam, Netherlands
[4] Erasmus MC, Dept Cardiol, Rotterdam, Netherlands
[5] UMC Utrecht, Dept Cardiol, Utrecht, Netherlands
[6] Leiden UMC, Dept Cardiol, Leiden, Netherlands
[7] Interuniv Cardiol Inst Netherlands, Utrecht, Netherlands
[8] Rcadia Med Imaging, Haifa, Israel
[9] Delft Univ Technol, Fac Sci Appl, Quantitat Imaging Grp, Delft, Netherlands
[10] VRVis Res Ctr Virtual Real & Visualizat, Vienna, Austria
[11] Toshiba Med Visualizat Syst, Edinburgh, Midlothian, Scotland
[12] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey
[13] Natl Taiwan Univ, Inst Biomed Engn, Taipei 10764, Taiwan
[14] Univ Paris Est, Lab Informat Gaspard Monge, Equipe A3SI, Noisy Le Grand, France
[15] Gen Elect Med Syst Europe, F-78530 Buc, France
[16] Pontificia Univ Javeriana, Dept Ingn Sistemas, Grp Takina, Bogota, Colombia
[17] Univ Lyon, CREATIS, CNRS UMR 5220, INSERM U1044,INSA Lyon, Lyon, France
[18] Bahcesehir Univ, Istanbul, Turkey
[19] Linkoping Univ, Dept Med & Hlth Sci, Ctr Med Imaging Sci & Visualizat, Linkoping, Sweden
[20] Tech Univ Munich, D-80290 Munich, Germany
[21] Helmholtz Zentrum Munich, Inst Biomath & Biometry, Munich, Germany
[22] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
[23] Univ Nice Sophia Antipolis, Lab Informat Signal & Syst I3S, Nice Sophia Antipolis, France
[24] Univ Cent Lancashire, Sch Comp Engn & Phys Sci, Preston PR1 2HE, Lancs, England
关键词
Standardized evaluation framework; Coronary arteries; Computed tomography angiography (CTA); stenoses detection; stenoses quantification; AUTOMATIC DETECTION; CT; DISEASE; PLAQUE;
D O I
10.1016/j.media.2013.05.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CIA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CIA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (I) (semi-)automatically detect and quantify stenosis on CIA, in comparison with quantitative coronary angiography (QCA) and CIA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CIA, in comparison with expert's manual annotation. A database consisting of 48 multicenter multivendor cardiac CIA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:859 / 876
页数:18
相关论文
共 50 条
  • [21] Non-diagnostic coronary artery calcification and stenosis: a correlation of coronary computed tomography angiography and invasive coronary angiography
    Engel, Leif-Christopher
    Thai, Wai-ee
    Medina-Zuluaga, Hector
    Karolyi, Mihaly
    Sidhu, Manavjot S.
    Maurovich-Horvat, Pal
    Margey, Ronan
    Pomerantsev, Eugene
    Abbara, Suhny
    Ghoshhajra, Brian B.
    Hoffmann, Udo
    Liew, Gary Y.
    ACTA RADIOLOGICA, 2017, 58 (05) : 528 - 536
  • [22] Ultra-High-Resolution Computed Tomography Angiography for Assessment of Coronary Artery Stenosis
    Motoyama, Sadako
    Ito, Hajime
    Sarai, Masayoshi
    Nagahara, Yasuomi
    Miyajima, Keiichi
    Matsumoto, Ryota
    Doi, Yujiro
    Kataoka, Yumi
    Takahashi, Hiroshi
    Ozaki, Yukio
    Toyama, Hiroshi
    Katada, Kazuhiro
    CIRCULATION JOURNAL, 2018, 82 (07) : 1844 - 1851
  • [23] Coronary Artery Stenosis Quantification for Computed Tomography Angiography Based on Modified Student's t-Mixture Model
    Sun, Qiaoyu
    Yang, Guanyu
    Shu, Huazhong
    Shi, Daming
    ETRI JOURNAL, 2017, 39 (05) : 662 - 671
  • [24] A New Method for Evaluating Renal Artery Stenosis and Coronary Artery Disease by Multislice Computed Tomography
    Takeda, Yoshihiro
    Hoshiga, Masaaki
    Fujisaka, Tomohiro
    Hotchi, Junko
    Yuki, Takahito
    Tatsugami, Fuminari
    Ishihara, Tadashi
    Narumi, Yoshifumi
    Hanafusa, Toshiaki
    CIRCULATION, 2009, 120 (18) : S361 - S361
  • [25] Use of computed tomography to assess coronary artery stenosis
    Hakeem, Abdul
    Bhatti, Sabha
    Chapman, Carrie B.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2006, 296 (21): : 2556 - 2556
  • [26] Automatic coronary artery segmentation and diagnosis of stenosis by deep learning based on computed tomographic coronary angiography
    Yiming Li
    Yu Wu
    Jingjing He
    Weili Jiang
    Jianyong Wang
    Yong Peng
    Yuheng Jia
    Tianyuan Xiong
    Kaiyu Jia
    Zhang Yi
    Mao Chen
    European Radiology, 2022, 32 : 6037 - 6045
  • [27] Automatic coronary artery segmentation and diagnosis of stenosis by deep learning based on computed tomographic coronary angiography
    Li, Yiming
    Wu, Yu
    He, Jingjing
    Jiang, Weili
    Wang, Jianyong
    Peng, Yong
    Jia, Yuheng
    Xiong, Tianyuan
    Jia, Kaiyu
    Yi, Zhang
    Chen, Mao
    EUROPEAN RADIOLOGY, 2022, 32 (09) : 6037 - 6045
  • [28] NATURAL COURSE OF INTERMEDIATE STENOSIS IN COMPUTED TOMOGRAPHY CORONARY ANGIOGRAPHY
    Hong, Seungpyo
    Lee, Chan Wook
    Son, Ji Hyun
    Lee, Young Soo
    Lee, Jin Bae
    Ryu, Jae Kean
    Choi, Ji Yong
    Kim, Kee Sik
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 65 (10) : A1164 - A1164
  • [29] Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading
    Hameeteman, K.
    Zuluaga, M. A.
    Freiman, M.
    Joskowicz, L.
    Cuisenaire, O.
    Florez Valencia, L.
    Guelsuen, M. A.
    Krissian, K.
    Mille, J.
    Wong, W. C. K.
    Orkisz, M.
    Tek, H.
    Hernandez Hoyos, M.
    Benmansour, F.
    Chung, A. C. S.
    Rozie, S.
    van Gils, M.
    van den Borne, L.
    Sosna, J.
    Berman, P.
    Cohen, N.
    Douek, P. C.
    Sanchez, I.
    Aissat, M.
    Schaap, M.
    Metz, C. T.
    Krestin, G. P.
    van der Lugt, A.
    Niessen, W. J.
    van Walsum, T.
    MEDICAL IMAGE ANALYSIS, 2011, 15 (04) : 477 - 488
  • [30] Comparison of magnetocardiography and coronary computed tomographic angiography for detection of coronary artery stenosis and the influence of calcium
    Wu, Tingting
    Zhao, Xin
    Feng, Lanxin
    Yang, Shuwen
    Xing, Haoran
    Ma, Zhao
    Yang, Xueyao
    Zhang, Min
    Ding, Ming
    He, Yi
    Tu, Chenchen
    Song, Xiantao
    Zhang, Hongjia
    EUROPEAN RADIOLOGY, 2025,