A new operational matrix of Muntz-Legendre polynomials and Petrov-Galerkin method for solving fractional Volterra-Fredholm integro-differential equations

被引:6
|
作者
Sabermahani, Sedigheh [1 ]
Ordokhani, Yadollah [1 ]
机构
[1] Alzahra Univ, Fac Math Sci, Dept Math, Tehran, Iran
来源
关键词
Muntz-Legendre polynomials; Petrov-Galerkin method; Laplace transform; NUMERICAL-SOLUTION; ORDER;
D O I
10.22034/cmde.2020.32623.1515
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This manuscript is devoted to present an efficient numerical method for finding numerical solution of Volterra-Fredholm integro-differential equations of fractional-order. This technique is based on applying Muntz-Legendre polynomials and Petrov-Galerkin method. A new Riemann-Liouville operational matrix for Muntz-Legendre polynomials is proposed using Laplace transform. Employing this operational matrix and Petrov-Galerkin method, transforms the problem into a system of algebraic equations. Next, we solve this system by applying any iterative method. An estimation of the error is proposed. Moreover, some numerical examples are implemented in order to show the validity and accuracy of the suggested method.
引用
收藏
页码:408 / 423
页数:16
相关论文
共 50 条
  • [21] A Bernstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-differential equations
    Maleknejad, K.
    Basirat, B.
    Hashemizadeh, E.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 1363 - 1372
  • [22] An Operational Matrix Technique Based on Chebyshev Polynomials for Solving Mixed Volterra-Fredholm Delay Integro-Differential Equations of Variable-Order
    Raslan, Kamal R.
    Ali, Khalid K.
    Mohamed, Emad M. H.
    Younis, Jihad A.
    Abd El Salam, Mohamed A.
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [23] Chebyshev cardinal functions for solving volterra-fredholm integro-differential equations using operational matrices
    Heydari, M.
    Avazzadeh, Z.
    Loghmani, G. B.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2012, 36 (A1): : 13 - 24
  • [24] Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations
    Dawood, Lafta A.
    Hamoud, Ahmed A.
    Mohammed, Nedal M.
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 21 (02): : 158 - 163
  • [25] Numerical solution of singular Fredholm integro-differential equations of the second kind via Petrov-Galerkin method by using Legendre multiwavelet
    Akhavan, S.
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 9 (04): : 321 - 331
  • [26] Solving Fractional Fredholm Integro-Differential Equations by Laguerre Polynomials
    Dascioglu, Aysegul
    Bayram, Dilek Varol
    [J]. SAINS MALAYSIANA, 2019, 48 (01): : 251 - 257
  • [27] Some New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations
    Hamoud, Ahmed A.
    Ghadle, Kirtiwant P.
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2022, 17 (01): : 135 - 144
  • [28] A New Numerical Method to Solve Nonlinear Volterra-Fredholm Integro-Differential Equations
    Hou, Jinjiao
    Niu, Jing
    Xu, Minqiang
    Ngolo, Welreach
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (03) : 469 - 478
  • [29] A New Operational Method for Solving Nonlinear Volterra Integro-differential Equations with Fractional Order
    Moghadam, M. Mohseni
    Saeedi, H.
    Mollahasani, N.
    [J]. JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2010, 2 (2-3): : 95 - 107
  • [30] A Numerical Method for Investigating Fractional Volterra-Fredholm Integro-Differential Model
    Syam, Muhammed I.
    Sharadga, Mwaffag
    Hashim, Ishak
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1429 - 1448