Degenerate Motion Analysis for Aided INS With Online Spatial and Temporal Sensor Calibration

被引:63
|
作者
Yang, Yulin [1 ]
Geneva, Patrick [2 ]
Eckenhoff, Kevin [1 ]
Huang, Guoquan [1 ]
机构
[1] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA
[2] Univ Delaware, Dept Comp & Informat Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Calibration and identification; visual-based navigation; inertial navigation system; observability analysis; KALMAN FILTER;
D O I
10.1109/LRA.2019.2893803
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this letter, we perform in-depth observability analysis for both spatial and temporal calibration parameters of an aided inertial navigation system (INS) with global and/or local sensing modalities. In particular, we analytically show that both spatial and temporal calibration parameters are observable if the sensor platform undergoes random motion. More importantly, we identify four degenerate motion primitives that harm the calibration accuracy and thus should be avoided in reality whenever possible. Interestingly, we also prove that these degenerate motions would still hold even in the case where global pose measurements are available. Leveraging a particular multi-state constrained Kalman filter based vision-aided INS with online spatial and temporal calibration, we perform extensively both Monte-Carlo simulations and real-world experiments with the identified degenerate motions to validate our analysis.
引用
收藏
页码:2070 / 2077
页数:8
相关论文
共 50 条
  • [41] Online Temporal-Spatial Analysis for Detection of Critical Events in Cyber-Physical Systems
    Fu, Zhang
    Almgren, Magnus
    Landsiedel, Olaf
    Papatriantafilou, Marina
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 129 - 134
  • [42] Motion Salient Detection Based on Region-of-Non-Interest Spatial-Temporal Analysis
    Si Wei
    Deng Mi-Ke
    Xiao Chuang-Bai
    2009 INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY, PROCEEDINGS, 2009, : 207 - 210
  • [43] Data Compression by Temporal and Spatial Correlations in a Body-Area Sensor Network: A Case Study in Pilates Motion Recognition
    Wu, Chun-Hao
    Tseng, Yu-Chee
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2011, 10 (10) : 1459 - 1472
  • [44] Validation of Knot-Tying Motion by Temporal-Spatial Matching with RGB-D Sensor for Surgical Training
    Ogawa, Yoko
    Shimada, Nobutaka
    Shirai, Yoshiaki
    Kurumi, Yoshimasa
    Komori, Masaru
    INNOVATION IN MEDICINE AND HEALTHCARE 2015, 2016, 45 : 585 - 589
  • [45] Towards site-independent calibration of in situ soil pH sensor data: Relevance of spatial and temporal proximity, sample size and data spread for calibration model performance
    Vogel, Sebastian
    Gebbers, Mandy
    Schroeter, Ingmar
    Schwanghart, Wolfgang
    Boenecke, Eric
    Ruehlmann, Jorg
    Kramer, Eckart
    Gebbers, Robin
    GEODERMA, 2025, 456
  • [46] Measurement Analysis of the Live E! Sensor Network: Spatial-Temporal Correlations and Data Aggregation
    Ben Hamida, Elyes
    Ochiai, Hideya
    Esaki, Hiroshi
    Borgnat, Pierre
    Abry, Patrice
    Fleury, Eric
    2009 9TH ANNUAL INTERNATIONAL SYMPOSIUM ON APPLICATIONS AND THE INTERNET, 2009, : 263 - +
  • [47] Measurement analysis of the live E! sensor network: Spatial-temporal correlations and data aggregation
    Université de Lyon, INSA Lyon, INRIA/ARES, France
    不详
    不详
    Proc. - Annu. Int. Symp. Appl. Internet, SAINT, (263-266):
  • [48] Spatial-Temporal Analysis of Vehicle Routing Problem from Online Car-Hailing Trajectories
    Feng, Xuyu
    Yu, Jianhua
    Kan, Zihan
    Zhou, Lin
    Tang, Luliang
    Yang, Xue
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (08)
  • [49] Spatial temporal graph convolution network for the analysis of regional wall motion in left ventricular opacification echocardiography
    Cui, Rongpu
    He, Wenfeng
    Huang, Junhao
    Zhang, Junyan
    Zhang, Haozhe
    Liang, Shichu
    He, Yujun
    Liu, Zhiyue
    Gao, Shaobing
    He, Yong
    Peng, Jian
    Huang, He
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 103
  • [50] Intelligence Framework Based Analysis of Spatial–Temporal Data with Compressive Sensing Using Wireless Sensor Networks
    Mukil Alagirisamy
    Chee-Onn Chow
    Kamarul Ariffin Bin Noordin
    Wireless Personal Communications, 2020, 112 : 91 - 103