Degenerate Motion Analysis for Aided INS With Online Spatial and Temporal Sensor Calibration

被引:63
|
作者
Yang, Yulin [1 ]
Geneva, Patrick [2 ]
Eckenhoff, Kevin [1 ]
Huang, Guoquan [1 ]
机构
[1] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA
[2] Univ Delaware, Dept Comp & Informat Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Calibration and identification; visual-based navigation; inertial navigation system; observability analysis; KALMAN FILTER;
D O I
10.1109/LRA.2019.2893803
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this letter, we perform in-depth observability analysis for both spatial and temporal calibration parameters of an aided inertial navigation system (INS) with global and/or local sensing modalities. In particular, we analytically show that both spatial and temporal calibration parameters are observable if the sensor platform undergoes random motion. More importantly, we identify four degenerate motion primitives that harm the calibration accuracy and thus should be avoided in reality whenever possible. Interestingly, we also prove that these degenerate motions would still hold even in the case where global pose measurements are available. Leveraging a particular multi-state constrained Kalman filter based vision-aided INS with online spatial and temporal calibration, we perform extensively both Monte-Carlo simulations and real-world experiments with the identified degenerate motions to validate our analysis.
引用
收藏
页码:2070 / 2077
页数:8
相关论文
共 50 条
  • [1] Automatic Calibration and In-Motion Alignment of an Odometer-aided INS
    Wang Qingzhe
    Fu Mengyin
    Xiao Xuan
    Deng Zhihong
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 2024 - 2028
  • [2] Temporal and Spatial Online Integrated Calibration for Camera and LiDAR
    Wang, Shouan
    Zhang, Xinyu
    Zhang, GuiPeng
    Xiong, Yijin
    Tian, Ganglin
    Guo, Shichun
    Li, Jun
    Lu, Pingping
    Wei, Junqing
    Tian, Lei
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 3016 - 3022
  • [3] Efficient Multi-sensor Aided Inertial Navigation with Online Calibration
    Lee, Woosik
    Yang, Yulin
    Huang, Guoquan
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5706 - 5712
  • [4] Unified Temporal and Spatial Calibration for Multi-Sensor Systems
    Furgale, Paul
    Rehder, Joern
    Siegwart, Roland
    2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 1280 - 1286
  • [5] Joint Spatial-Temporal Calibration for Camera and Global Pose Sensor
    Song, Junlin
    Richard, Antoine
    Olivares-Mendez, Miguel
    2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 1027 - 1036
  • [6] Online Calibration Between Camera and LiDAR With Spatial-Temporal Photometric Consistency
    Jing, Yonglin
    Yuan, Chongjian
    Hong, Xiaoping
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1027 - 1034
  • [7] Online Spatial and Temporal Calibration for Monocular Direct Visual-Inertial Odometry
    Feng, Zheyu
    Li, Jianwen
    Zhang, Lundong
    Chen, Chen
    SENSORS, 2019, 19 (10):
  • [8] Multiconstraint Spatial and Temporal Calibration of Rotating Line Structured Light Vision Sensor
    Han, Fuzhang
    Zhang, Qunkang
    Fu, Bo
    Yang, Tong
    Wang, Yue
    Xiong, Rong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [9] Online Spatio-temporal Calibration of Tightly-coupled Ultrawideband-aided Inertial Localization
    Goudar, Abhishek
    Schoellig, Angela P.
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 1161 - 1168
  • [10] 3-D Motion Estimation and Online Temporal Calibration for Camera-IMU Systems
    Li, Mingyang
    Mourikis, Anastasios I.
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 5709 - 5716