Extrapolation of discrete Triebel-Lizorkin spaces

被引:2
|
作者
Bownik, Marcin [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
Triebel-Lizorkin space; expansive dilation; doubling measure; wavelet transform; Calderon product; msc (2010) Primary: 42B25; 42B35; 42C40; Secondary: 46B70; 47B37; 47B38; MOLECULAR DECOMPOSITIONS; BESOV-LIPSCHITZ; HARDY-SPACES; TRANSFORM;
D O I
10.1002/mana.201100186
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show an extrapolation formula for discrete Triebel-Lizorkin spaces which extends a formula of Cwikel and Nilsson 14 to quasi-Banach lattices. This is done in the general setting of anisotropic Triebel-Lizorkin spaces associated with expansive dilations and doubling measures on R-n introduced by the author 4, 5. Our main result is new even in the standard dyadic setting.
引用
收藏
页码:492 / 502
页数:11
相关论文
共 50 条
  • [21] TRIEBEL-LIZORKIN SPACES ON SPACES OF HOMOGENEOUS TYPE
    HAN, YS
    [J]. STUDIA MATHEMATICA, 1994, 108 (03) : 247 - 273
  • [22] The characterization of the Triebel-Lizorkin spaces forp=∞
    Huy-Qui Bui
    Mitchell H. Taibleson
    [J]. Journal of Fourier Analysis and Applications, 2000, 6 : 537 - 550
  • [23] HERMITE BESOV AND TRIEBEL-LIZORKIN SPACES AND APPLICATIONS
    Ly, Fu Ken
    Naibo, Virginia
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 66 (01): : 243 - 263
  • [24] Traces of Besov and Triebel-Lizorkin spaces on domains
    Schneider, Cornelia
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 572 - 586
  • [25] Continuity of multilinear operators on Triebel-Lizorkin spaces
    Liu, Lanzhe
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1)
  • [26] On Fourier multipliers in weighted Triebel-Lizorkin spaces
    Edmunds, DE
    Kokilashvili, V
    Meskhi, A
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (04): : 555 - 591
  • [27] Homogeneity Property of Besov and Triebel-Lizorkin Spaces
    Schneider, Cornelia
    Vybiral, Jan
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [28] Decomposition of Besov and Triebel-Lizorkin spaces on the sphere
    Narcowich, F.
    Petrushev, P.
    Ward, J.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) : 530 - 564
  • [29] Operator-Valued Triebel-Lizorkin Spaces
    Xia, Runlian
    Xiong, Xiao
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (06)
  • [30] A NEW KIND OF SPACES OF TRIEBEL-LIZORKIN TYPE
    Sun Qiyu(ZheJiang University
    [J]. Analysis in Theory and Applications, 1996, (02) : 80 - 85