Control of Schottky and ohmic interfaces by unpinning Fermi level

被引:42
|
作者
Hara, S [1 ]
Teraji, T [1 ]
Okushi, H [1 ]
Kajimura, K [1 ]
机构
[1] UNIV TSUKUBA,FAC MAT SCI,TSUKUBA,IBARAKI 305,JAPAN
关键词
Fermi level pinning; Ohmic contact; Schottky contact; monohydride; interface states;
D O I
10.1016/S0169-4332(97)80113-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose the first systematical method to control Schottky barrier heights of metal/semiconductor interfaces by controlling the density of interface electronic states and the number of charges in the states. The density of interface states is controlled by changing the density of surface electronic states, which is controlled by surface hydrogenation and flattening the surface atomically. We apply establishing hydrogen termination techniques using a chemical solution, pH controlled buffered HF or hot water, Also, slow oxidation by oxygen gas was used to flatten resultant semiconductor surfaces. The density of interface charges is changeable by controlling a metal work function. When the density of surface states is reduced enough to unpin the Fermi level, the barrier height is determined simply by the difference between the work function of a metal phi(m) and the flat-band semiconductor phi(s)(FB). In such an interface with the law density of interface states, an ohmic contact with a zero barrier height is formed when we select a metal with phi(m) < phi(s)(FB). We have already demonstrated controlling Schottky and ohmic properties by changing the pinning degree on silicon carbide (0001) surfaces. Further, on an atomically-flat Si(111) surface with monohydride termination, we have observed the lowering of an Al barrier height. Moreover, we found the recovery of an ohmic property after TiC formation at Ti/6H-SiC interface at 700 degrees C whereas conventional 5% HF rinsed Schottky Ti/6H-SiC interfaces still have Schottky properties after TiC formation.
引用
收藏
页码:394 / 399
页数:6
相关论文
共 50 条
  • [21] Schottky barrier formation at ErAs/GaAs interfaces: A case of Fermi level pinning by surface states
    Lambrecht, WRL
    Petukhov, AG
    Hemmelman, BT
    SOLID STATE COMMUNICATIONS, 1998, 108 (06) : 361 - 365
  • [22] Metal/SI GaAs/Metal systems: Demonstration of unpinning of the Fermi level at the interface
    Dubecky, F.
    Hubik, P.
    Gombia, E.
    Kindl, D.
    Dubecky, M.
    Mudron, J.
    Bohacek, P.
    Sekacova, M.
    NINTH INTERNATIONAL CONFERENCE ON ADVANCED SEMICONDUCTOR DEVICES AND MICROSYSTEMS, 2012, : 143 - 146
  • [23] ANNEALING AG ON GAAS - INTERPLAY BETWEEN CLUSTER FORMATION AND FERMI LEVEL UNPINNING
    CHIANG, TT
    WAHI, AK
    LINDAU, I
    SPICER, WE
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1989, 7 (04): : 958 - 963
  • [24] Schottky and Ohmic Contacts at α-Tellurene/2D Metal Interfaces
    Wang, Youxi
    Yuan, Hao
    Li, Zhenyu
    Yang, Jinlong
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (03) : 1082 - 1088
  • [25] OHMIC CONTACTS TO GAAS - COPING WITH FERMI LEVEL PINNING
    WOODALL, J
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (03) : C116 - C116
  • [26] ELECTRICAL AND OPTICAL EVALUATION OF PASSIVATED GAAS SURFACE RECOMBINATION VELOCITY AND FERMI LEVEL UNPINNING
    JOHNSON, DA
    WADHERA, K
    PUECHNER, RA
    KANG, NS
    MARACAS, GN
    SCHRODER, DK
    INSTITUTE OF PHYSICS CONFERENCE SERIES <D>, 1989, (96): : 409 - 412
  • [27] New Insight into Fermi-Level Unpinning on GaAs: Impact of Different Surface Orientations
    Xu, M.
    Xu, K.
    Contreras, R.
    Milojevic, M.
    Shen, T.
    Koybasi, O.
    Wu, Y. Q.
    Wallace, R. M.
    Ye, P. D.
    2009 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, 2009, : 809 - +
  • [28] ELECTRICAL AND OPTICAL EVALUATION OF PASSIVATED GAAS SURFACE RECOMBINATION VELOCITY AND FERMI LEVEL UNPINNING
    JOHNSON, DA
    WADHERA, K
    PUECHNER, RA
    KANG, NS
    MARACAS, GN
    SCHRODER, DK
    GALLIUM ARSENIDE AND RELATED COMPOUNDS 1988, 1989, : 409 - 412
  • [29] Fermi level pinning mitigation in GaN Schottky contacts via UV/O3-treated interfaces
    Ham, Goeun
    Suk, Sumin
    Kim, Kwangeun
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2025,
  • [30] Effects of multi-level fermi pinning and aggregate surface area on Schottky barrier heights at metal/semiconductor interfaces
    Sheffield Hallam Univ, Sheffield, United Kingdom
    Int J Electron, 1 (59-65):