Enhanced laser wakefield acceleration using dual-color relativistic pulses

被引:3
|
作者
Hafz, Nasr A. M. [1 ,2 ,3 ]
Li, Guangyu [4 ]
Li, Song [1 ]
Ain, Quratul [5 ]
Gao, Kai [6 ]
Saeed, Muhammad [4 ]
Papp, Daniel [1 ]
Zhu, Jianqiang [2 ]
Kamperidis, Christos [1 ]
机构
[1] ELI HU Nonprofit Ltd, ELI ALPS, Wolfgang Sandner Utca 3, H-6728 Szeged, Hungary
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech SIOM, Natl Lab High Power Laser & Phys, Shanghai 201800, Peoples R China
[3] Egyptian Atom Energy Author, Dept Plasma & Nucl Fus, Nucl Res Ctr, Abu Zabal 13759, Egypt
[4] Shanghai Jiao Tong Univ, Sch Phys & Astron, Minist Educ, Key Lab Laser Plasmas, Shanghai 200240, Peoples R China
[5] Univ Management & Technol, Dept Phys, Lahore 54770, Pakistan
[6] Univ New South Wales, Fac Built Environm, Sydney, NSW 2052, Australia
关键词
dual-color laser-plasma accelerator; laser wakefield acceleration; self-injection; ionization injection; PIC simulation; ELECTRON-BEAMS; GENERATION;
D O I
10.1088/1361-6587/aba481
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In a recent article by Liet al(2019Sci. Adv.5. eaav7940), experimental results from a dual-color laser wakefield acceleration (LWFA) were presented. In the present paper we, primarily, focus on detailed simulation studies of such a scheme in the self-injection and ionization injection regimes, respectively. The spatiotemporally-overlapped 30 fs dual-color laser pulses are at fundamental (FL, 800 nm, 'red') and second-harmonic (SH, 400 nm, 'blue') wavelengths. They are (a) co-propagating in an under-dense plasma, (b) relativistically intense (I> 10(18)W cm(-2)) and (c) having relatively high-energy (multi-Joule, loose focusing) and low-energy (sub-Joule, tight focusing), respectively. The basic concept of the scheme is the fact that the depletion length (L-pd) for a relativistic laser pulse in an under-dense plasma has an inverse quadratic dependence on the laser wavelength (proportional to 1/lambda(2)). Here, first by using a single FL 77 TW/30 fs laser pulse to drive a LWFA, an electron beam was accelerated up to similar to 400 MeV from a background plasma having an electron density of 10(19)cm(-3). Then, by driving the same LWFA by co-propagating 'blue' 7 TW/30 fs and 'red' 70 TW/30 fs laser pulses, the electron energy reached similar to 700-800 MeV (maximum). The simulations confirm that in such a dual-color LWFA scheme, the role of the SH laser pulse is post-accelerating electrons after a rapid depletion of the FL laser pulse in the plasma. Furthermore, the SH pulse assists the ionization-injection of the electrons which is an additional benefit of the dual-color LWFA scheme.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [41] Enhanced proton acceleration using split intense femtosecond laser pulses
    Bai, R. X.
    Zhou, C. T.
    Huang, T. W.
    Jiang, K.
    Ju, L. B.
    Li, R.
    Peng, H.
    Yu, M. Y.
    Qiao, B.
    Ruan, S. C.
    He, X. T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (08)
  • [42] Enhanced target normal sheath acceleration using colliding laser pulses
    J. Ferri
    E. Siminos
    T. Fülöp
    Communications Physics, 2
  • [43] Laser plasma wakefield acceleration gain enhancement by means of accelerating Bessel pulses
    S. Kumar
    A. Parola
    P. Di Trapani
    O. Jedrkiewicz
    Applied Physics B, 2017, 123
  • [44] Laser plasma wakefield acceleration gain enhancement by means of accelerating Bessel pulses
    Kumar, S.
    Parola, A.
    Di Trapani, P.
    Jedrkiewicz, O.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2017, 123 (06):
  • [45] Dual-color γ-rays via all-optical Compton scattering from a cascaded laser-driven wakefield accelerator
    Wu, Ying
    Yu, Changhai
    Qin, Zhiyong
    Wang, Wentao
    Qi, Rong
    Zhang, Zhijun
    Feng, Ke
    Ke, Lintong
    Chen, Yu
    Wang, Cheng
    Liu, Jiansheng
    Li, Ruxin
    Xu, Zhizhan
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (08)
  • [46] Splash plasma channels produced by picosecond laser pulses in argon gas for laser wakefield acceleration
    Mizuta, Y.
    Hosokai, T.
    Masuda, S.
    Zhidkov, A.
    Makito, K.
    Nakanii, N.
    Kajino, S.
    Nishida, A.
    Kando, M.
    Mori, M.
    Kotaki, H.
    Hayashi, Y.
    Bulanov, S. V.
    Kodama, R.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2012, 15 (12):
  • [47] Channeling of Relativistic Laser Pulses, Surface Waves, and Electron Acceleration
    Naseri, N.
    Pesme, D.
    Rozmus, W.
    Popov, K.
    PHYSICAL REVIEW LETTERS, 2012, 108 (10)
  • [48] Dual effects of stochastic heating on electron injection in laser wakefield acceleration
    Deng, Z. G.
    Yang, L.
    Zhou, C. T.
    Yu, M. Y.
    Ying, H. P.
    Wang, X. G.
    PHYSICS OF PLASMAS, 2014, 21 (08)
  • [49] Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses
    Schlegel, T.
    Naumova, N.
    Tikhonchuk, V. T.
    Labaune, C.
    Sokolov, I. V.
    Mourou, G.
    PHYSICS OF PLASMAS, 2009, 16 (08)
  • [50] Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme
    Yu, Changhai
    Deng, Aihua
    Tian, Ye
    Li, Wentao
    Wang, Wentao
    Zhang, Zhijun
    Qi, Rong
    Wang, Cheng
    Liu, Jiansheng
    PHYSICS OF PLASMAS, 2016, 23 (08)