A posteriori error estimates of stabilized finite element method for the steady Navier-Stokes problem

被引:4
|
作者
Zhang, Tong [1 ,2 ]
Zhao, Xin [3 ]
Lei, Gang [4 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
[2] Univ Fed Parana, Dept Matemat, Ctr Politecn, BR-81531990 Curitiba, Parana, Brazil
[3] Baoji Univ Arts & Sci, Dept Geog Sci & Environm Engn, Baoji 721013, Peoples R China
[4] Baoji Univ Arts & Sci, Dept Math, Baoji 721013, Peoples R China
关键词
Steady Navier-Stokes equations; Stabilized finite element method; A posteriori error estimate; Adaptivity; INCOMPRESSIBLE-FLOW; EQUATIONS; APPROXIMATIONS;
D O I
10.1016/j.amc.2013.03.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a posteriori error estimates for the steady Navier-Stokes equations based on the lowest equal-order mixed finite element pair. Residual type a posteriori error estimates are derived by means of general framework established by Verfurth for the nonlinear equations. Furthermore, a simple error estimator in L-2 norm is also presented by using the duality argument. Numerical experiments using adaptive computations are presented to demonstrate the effectiveness of these error estimates for three examples. The first example is a singular problem with known solution, the second example is a physical model of lid driven cavity and the last one is a backward facing step problem. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:9081 / 9092
页数:12
相关论文
共 50 条
  • [31] Local projection stabilized finite element method for Navier-Stokes equations
    Qin, Yan-mei
    Feng, Min-fu
    Luo, Kun
    Wu, Kai-teng
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (05) : 651 - 664
  • [32] Stabilized finite-element method for the stationary Navier-Stokes equations
    He, YN
    Wang, AW
    Mei, LQ
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2005, 51 (04) : 367 - 380
  • [33] Local projection stabilized finite element method for Navier-Stokes equations
    Yan-mei Qin
    Min-fu Feng
    Kun Luo
    Kai-teng Wu
    [J]. Applied Mathematics and Mechanics, 2010, 31 : 651 - 664
  • [34] Stabilized multiscale finite element method for the stationary Navier-Stokes equations
    Ge, Zhihao
    Feng, Minfu
    He, Yinnian
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (02) : 708 - 717
  • [35] A stabilized finite element method for stochastic incompressible Navier-Stokes equations
    El-Amrani, Mofdi
    Seaid, Mohammed
    Zahri, Mostafa
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (18) : 2576 - 2602
  • [36] Error estimates of finite element methods for fractional stochastic Navier-Stokes equations
    Li, Xiaocui
    Yang, Xiaoyuan
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [37] A decoupled stabilized finite element method for the time-dependent Navier-Stokes/Biot problem
    Guo, Liming
    Chen, Wenbin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) : 10749 - 10774
  • [38] A Stabilized Difference Finite Element Method for the 3D Steady Incompressible Navier-Stokes Equations
    Xiaoli Lu
    Pengzhan Huang
    Xinlong Feng
    Yinnian He
    [J]. Journal of Scientific Computing, 2022, 92
  • [39] A Stabilized Difference Finite Element Method for the 3D Steady Incompressible Navier-Stokes Equations
    Lu, Xiaoli
    Huang, Pengzhan
    Feng, Xinlong
    He, Yinnian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
  • [40] A posteriori error estimation for the steady Navier-Stokes equations in random domains
    Guignard, Diane
    Nobile, Fabio
    Picasso, Marco
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 313 : 483 - 511