We compare realizability models over partial combinatory algebras by embedding them into sheaf toposes. We then use the machinery of Grothendieck toposes and geometric morphisms to study the relationship between realizability models over different partial combinatory algebras. This research is part of the Logic of Types and Computation project at Carnegie Mellon University under the direction of Dana Scott.
机构:
CUNY Queensborough Community Coll, Dept Math & Comp Sci, New York, NY 11364 USACUNY Queensborough Community Coll, Dept Math & Comp Sci, New York, NY 11364 USA
Funk, Jonathon
Hofstra, Pieter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ottawa, Dept Math & Stat, 150 Louis Pasteur Pvt, Ottawa, ON K1N 6N5, CanadaCUNY Queensborough Community Coll, Dept Math & Comp Sci, New York, NY 11364 USA
机构:
Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, ItalyUniv Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
机构:
CUNY Queensborough Community Coll, Dept Math & Comp Sci, 222-05 56th Ave Bayside, New York, NY 11364 USACUNY Queensborough Community Coll, Dept Math & Comp Sci, 222-05 56th Ave Bayside, New York, NY 11364 USA
Funk, Jonathon
Hofstra, Pieter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ottawa, Dept Math & Stat, 585 King Edward Ave, Ottawa, ON K1N 6N5, CanadaCUNY Queensborough Community Coll, Dept Math & Comp Sci, 222-05 56th Ave Bayside, New York, NY 11364 USA