Approximate Bayesian Inference for Doubly Robust Estimation

被引:19
|
作者
Graham, Daniel J. [1 ]
McCoy, Emma J. [2 ]
Stephens, David A. [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Civil Engn, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[3] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
来源
BAYESIAN ANALYSIS | 2016年 / 11卷 / 01期
关键词
approximate bayes; doubly robust; propensity score; treatment effect; PROPENSITY SCORE; MODELS;
D O I
10.1214/14-BA928
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Doubly robust estimators are typically constructed by combining outcome regression and propensity score models to satisfy moment restrictions that ensure consistent estimation of causal quantities provided at least one of the component models is correctly specified. Standard Bayesian methods are difficult to apply because restricted moment models do not imply fully specified likelihood functions. This paper proposes a Bayesian bootstrap approach to derive approximate posterior predictive distributions that are doubly robust for estimation of causal quantities. Simulations show that the approach performs well under various sources of misspecification of the outcome regression or propensity score models. The estimator is applied in a case study of the effect of area deprivation on the incidence of child pedestrian casualties in British cities.
引用
收藏
页码:47 / 69
页数:23
相关论文
共 50 条
  • [31] Approximate Bayesian recursive estimation
    Karny, Miroslav
    INFORMATION SCIENCES, 2014, 285 : 100 - 111
  • [32] Robust Variational Bayesian Inference for Direction-of-Arrival Estimation With Sparse Array
    Liu, Ying
    Zhang, Zongyu
    Zhou, Chengwei
    Yan, Chenggang
    Shi, Zhiguo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8591 - 8602
  • [33] STATISTICAL INFERENCE FOR APPROXIMATE BAYESIAN OPTIMAL DESIGN
    Jaiswal, Prateek
    Honnappa, Harsha
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 2138 - 2148
  • [34] Approximate Bayesian computation using indirect inference
    Drovandi, Christopher C.
    Pettitt, Anthony N.
    Faddy, Malcolm J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2011, 60 : 317 - 337
  • [35] A BAYESIAN-APPROACH TO APPROXIMATE CONDITIONAL INFERENCE
    SWEETING, TJ
    BIOMETRIKA, 1995, 82 (01) : 25 - 36
  • [36] On the Expressiveness of Approximate Inference in Bayesian Neural Networks
    Foong, Andrew Y. K.
    Burt, David R.
    Li, Yingzhen
    Turner, Richard E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [37] Approximate Bayesian inference for mixture cure models
    E. Lázaro
    C. Armero
    V. Gómez-Rubio
    TEST, 2020, 29 : 750 - 767
  • [38] Approximate Bayesian inference under informative sampling
    Wang, Z.
    Kim, J. K.
    Yang, S.
    BIOMETRIKA, 2018, 105 (01) : 91 - 102
  • [39] Approximate Bayesian inference for mixture cure models
    Lazaro, E.
    Armero, C.
    Gomez-Rubio, V
    TEST, 2020, 29 (03) : 750 - 767
  • [40] Approximate Bayesian inference for spatial econometrics models
    Bivand, Roger S.
    Gomez-Rubio, Virgilio
    Rue, Havard
    SPATIAL STATISTICS, 2014, 9 : 146 - 165