Energy separation for Ranque-Hilsch vortex tube: A short review

被引:23
|
作者
Hu, Zhuohuan [1 ]
Li, Rui [1 ]
Yang, Xin [1 ]
Yang, Mo [1 ]
Day, Rodney [2 ]
Wu, Hongwei [2 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai Key Lab Multiphase Flow & Heat Transfer, Shanghai 200093, Peoples R China
[2] Univ Hertfordshire, Sch Engn & Comp Sci, Hatfield AL10 9AB, Herts, England
关键词
Vortex tube; Energy separation; Principle; Application; ARTIFICIAL NEURAL-NETWORK; CFD ANALYSIS; INDUSTRIAL APPLICATION; COMPUTATIONAL ANALYSIS; NUMERICAL-SIMULATION; FLOW STRUCTURE; PERFORMANCE; PARAMETERS; NUMBER; GASES;
D O I
10.1016/j.tsep.2020.100559
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article, the development of the energy separation for the vortex tube has been briefly reviewed. This review mainly focuses on three aspects, they are the energy separation principle, the design criteria of vortex tubes, and practical application. First, the research progress on the energy separation principle of the vortex tube from several aspects has been introduced, such as friction, pressure gradient, acoustic streaming, secondary circulation and multi-circulation theory. In addition, the control factors that affecting the performance of the vortex tube were summarized. Furthermore, due to its simple structure, safety and stability, the vortex tube is widely used in the field of refrigerating and heating, mixture separation. This survey, while extensive cannot cover all papers, some selection is necessary. The purpose of this review aims to summarize the important works of literature on the energy separation of vortex tube as well as identify limitations to existing studies and directions for future research.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Novel transonic nozzle for Ranque-Hilsch vortex tube
    Khait, Anatoliy
    Bianco, Vincenzo
    Lovtsov, Alexander
    Noskov, Alexander
    Alekhin, Vladimir
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 180
  • [32] Numerical modeling of the effect of energy-separation in the ranque-hilsch tube
    Ivanov, Boris L.
    Ziganshin, Bulat G.
    Dmitriev, Andrey, V
    Lushnov, Maxim A.
    Binelo, Manuel O.
    INTERNATIONAL SCIENTIFIC-PRACTICAL CONFERENCE AGRICULTURE AND FOOD SECURITY: TECHNOLOGY, INNOVATION, MARKETS, HUMAN RESOURCES (FIES 2020), 2020, 27
  • [33] Ranque-Hilsch Vortex Tube potential for water desalination
    Stanescu, George
    Defect and Diffusion Forum, 2013, 336 : 147 - 158
  • [34] Ranque-Hilsch vortex tube thermocycler for DNA amplification
    Ebmeier, R
    Whitney, S
    Alugupally, S
    Nelson, M
    Padhye, N
    Gogos, G
    Viljoen, HJ
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2004, 32 (05) : 567 - 570
  • [35] Experimental study on a simple Ranque-Hilsch vortex tube
    Gao, CM
    Bosschaart, KJ
    Zeegers, JCH
    de Waele, ATAM
    CRYOGENICS, 2005, 45 (03) : 173 - 183
  • [36] Maxwell's Demon in the Ranque-Hilsch Vortex Tube
    Liew, R.
    Zeegers, J. C. H.
    Kuerten, J. G. M.
    Michalek, W. R.
    PHYSICAL REVIEW LETTERS, 2012, 109 (05)
  • [37] Species separation in Ranque-Hilsch vortex tube using air as working fluid
    Chatterjee, M.
    Mukhopadhyay, S.
    Vijayan, P. K.
    HEAT AND MASS TRANSFER, 2018, 54 (12) : 3559 - 3572
  • [38] Experimental modeling of a curved Ranque-Hilsch vortex tube refrigerator
    Valipour, Mohammad Sadegh
    Niazi, Nima
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (04): : 1109 - 1116
  • [39] Numerical simulation of turbulent flow in a Ranque-Hilsch vortex tube
    Secchiaroli, A.
    Ricci, R.
    Montelpare, S.
    D'Alessandro, V.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (23-24) : 5496 - 5511
  • [40] Introduction of Annular Vortex Tube and experimental comparison with Ranque-Hilsch Vortex Tube
    Sadi, Meisam
    Farzaneh-Gord, Mahmood
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 46 : 142 - 151