General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface

被引:15
|
作者
Sun, Wenbo [1 ]
Pan, Huiying [2 ]
Videen, Gorden [3 ]
机构
[1] Sci Syst & Applicat Inc, Hampton, VA 23666 USA
[2] Calightech Opt Solut, Yorktown, VA 23693 USA
[3] USA, Res Lab, Adelphi, MD 20783 USA
关键词
DISCRETE-DIPOLE APPROXIMATION; PERFECTLY MATCHED LAYER; ABSORBING BOUNDARY-CONDITION; LIGHT-SCATTERING; PLANE SURFACE; OPTICAL-PROPERTIES; ROUGH SURFACES; WAVE SCATTERING; PARTICLES; SPHERE;
D O I
10.1364/AO.48.006015
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this study, we develop a numerical algorithm to calculate the interaction of an arbitrary electromagnetic beam with an arbitrary dielectric surface as one of the tools necessary to design and build a detector network based on surface-enhanced Raman scattering (SERS). By using the scattered-field finite-difference time-domain (FDTD) method with incident source terms in the FDTD equations, this development enables an arbitrary incident beam to be implemented onto an arbitrary dielectric surface or particle. Most importantly, in this study a scattered-field uniaxial perfectly matched layer (SF-UPML) absorbing boundary condition (ABC) is developed to truncate the computational domain of the scattered-field FDTD grid. The novel SF-UPML for the scattered-field FDTD algorithm should have a numerical accuracy similar to that of the conventional uniaxial perfectly matched layer for the source-free FDTD equations. Using the new ABC, the scattered-field FDTD method can accurately calculate electromagnetic wave scattering by an arbitrary dielectric surface or particles illuminated by an arbitrary incident beam. (C) 2009 Optical Society of America
引用
收藏
页码:6015 / 6025
页数:11
相关论文
共 50 条
  • [31] ELECTROMAGNETIC SCATTERING OF WAVES BY RANDOM ROUGH-SURFACE - A FINITE-DIFFERENCE TIME-DOMAIN APPROACH
    CHAN, CH
    LOU, SH
    TSANG, L
    KONG, JA
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1991, 4 (09) : 355 - 359
  • [32] Numerical evaluation of effective dielectric properties of three-dimensional composite materials with arbitrary inclusions using a finite-difference time-domain method
    Wu, Dagang
    Chen, Ji
    Liu, Ce
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (02)
  • [33] A general framework for the finite-difference time-domain simulation of real metals
    Pernice, Wolfram H. P.
    Payne, Frank P.
    Gallagher, Dominic F. G.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (03) : 916 - 923
  • [34] An Improved Finite-difference Time-domain Solution for Three-dimensional Transient Electromagnetic Modeling in Source-free Media
    Zhao, Xuejiao
    Yu, Yibing
    Ji, Yanju
    Luan, Hui
    RADIO SCIENCE, 2019, 54 (11) : 975 - 985
  • [35] Space-domain finite-difference and time-domain moment method for electromagnetic simulation
    Shao, W
    Wang, BZ
    Yu, ZJ
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2006, 48 (01) : 10 - 18
  • [36] CONFORMAL HYBRID FINITE-DIFFERENCE TIME-DOMAIN AND FINITE-VOLUME TIME-DOMAIN
    YEE, KS
    CHEN, JS
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1994, 42 (10) : 1450 - 1454
  • [37] Least Squares Finite-Difference Time-Domain
    de Oliveira, Rodrigo M. S.
    Paiva, Rodrigo R.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (09) : 6111 - 6115
  • [38] FINITE-DIFFERENCE SOLUTION OF POISSONS EQUATION IN RECTANGLES OF ARBITRARY PROPORTIONS
    ROSSER, JB
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1977, 28 (02): : 185 - 196
  • [39] Quantum Finite-Difference Time-Domain Scheme
    Na, Dong-Yeop
    Chew, Weng Cho
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM 2020), 2020, : 62 - 63
  • [40] A SEMIVECTORIAL FINITE-DIFFERENCE TIME-DOMAIN METHOD
    HUANG, WP
    CHU, ST
    CHAUDHURI, SK
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (09) : 803 - 806