On the approximation of the solution of the Schrodinger equation by superpositions of stationary solutions

被引:0
|
作者
Brasche, JF [1 ]
机构
[1] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lot S be a symmetric operator with gap J. Suppose in addition that the deficiency indices of S are infinite, the Hamiltonian H is a self-adjoint extension of S and the support of the spectral measure mu(f0,H) of the initial state f(0) is a compact subset of J. Then there exist other self-adjoint extensions H-n of S and finite sums f(n) of eigenvectors of H-n such that c(-itHn)f(n)-->c(-itH)f(0), as n --> infinity, locally uniformly in time. Upper estimates for the rate of convergence will be given.
引用
收藏
页码:111 / 119
页数:9
相关论文
共 50 条
  • [31] ASYMPTOTIC SOLUTIONS OF THE STATIONARY SCHRODINGER-EQUATION ASSOCIATED TO A CENTRAL POTENTIAL
    CANDELPERGHER, B
    NOSMAS, JC
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 291 (02): : 175 - 178
  • [32] EXISTENCE AND UNIQUENESS OF SINGULAR SOLUTION TO STATIONARY SCHRoDINGER EQUATION WITH SUPERCRITICAL NONLINEARITY
    Selem, Fouad Hadj
    Kikuchi, Hiroaki
    Wei, Juncheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (10) : 4613 - 4626
  • [33] A Solution of One-Dimensional Stationary Schrodinger Equation by the Fourier Transform
    Fitio, V. M.
    Yaremchuk, I. Y.
    Romakh, V. V.
    Bobitski, Y. V.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2015, 30 (05): : 534 - 539
  • [34] Stationary solutions of the nonlinear Schrodinger equation for neutral atoms in a harmonic trap
    Yan, KZ
    Tan, WH
    ACTA PHYSICA SINICA, 1999, 48 (07) : 1185 - 1191
  • [35] Approximation of a Solution to the Euler Equation by Solutions of the Navier–Stokes Equation
    Jiří Neustupa
    Patrick Penel
    Journal of Mathematical Fluid Mechanics, 2013, 15 : 179 - 196
  • [36] On the exact solution of the geometric optics approximation of the defocusing nonlinear Schrodinger equation
    Wright, OC
    Forest, MG
    McLaughlin, KTR
    PHYSICS LETTERS A, 1999, 257 (3-4) : 170 - 174
  • [37] An economical eighth-order method for the approximation of the solution of the Schrodinger equation
    Wang, Zhiwei
    Simos, T. E.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2017, 55 (03) : 717 - 733
  • [38] The time slicing approximation of the fundamental solution for the Schrodinger equation with electromagnetic fields
    Fujiwara, D
    Tsuchida, T
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1997, 49 (02) : 299 - 327
  • [39] EMERGING PROBLEMS IN APPROXIMATION THEORY FOR THE NUMERICAL SOLUTION OF THE NONLINEAR SCHRODINGER EQUATION
    Fermo, L.
    Van der Mee, C.
    Seatzu, S.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 96 (110): : 125 - 141
  • [40] GENERALIZED GAUSSIAN WAVE PACKET DYNAMICS, SCHRODINGER-EQUATION, AND STATIONARY PHASE APPROXIMATION
    HUBER, D
    HELLER, EJ
    LITTLEJOHN, RG
    JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (04): : 2003 - 2014