Real-Time Tracking of Packet-Pair Dispersion Nodes using the Kernel-Density and Gaussian-Mixture Models

被引:0
|
作者
Hosseinpour, M. [1 ]
Tunnicliffe, M. J. [1 ]
机构
[1] Kingston Univ, Fac Comp Informat Syst & Math, Kingston upon Thames KT1 2EE, Surrey, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A brief simulation study of real-time packet-dispersion mode-tracking using the Gaussian-Mix Model (originally devised for real-time background classification in moving pictures) and an adaptation of the Kernel-Density Estimator is presented. The simulated environment consisted of two FIFO store-and-forward nodes where the probe packets interact with Poisson and Pareto-generated cross-traffic with a range of packet sizes. The two models produced broad v similar results, able to track node activity under the dynamically changing conditions associated with the Pareto cross-traffic. The Gaussian model sometimes replaced the primary mode with a double peak, which disappeared when some of the model's parameters were changed.
引用
收藏
页码:548 / 552
页数:5
相关论文
共 50 条
  • [41] Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing
    Tarabalka, Yuliya
    Haavardsholm, Trym Vegard
    Kasen, Ingebjorg
    Skauli, Torbjorn
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2009, 4 (03) : 287 - 300
  • [42] Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing
    Yuliya Tarabalka
    Trym Vegard Haavardsholm
    Ingebjørg Kåsen
    Torbjørn Skauli
    Journal of Real-Time Image Processing, 2009, 4 : 287 - 300
  • [43] Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models
    Teng, S.
    Tebby, C.
    Barcellini-Couget, S.
    De Sousa, G.
    Brochot, C.
    Rahmani, R.
    Pery, A. R. R.
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2016, 305 : 118 - 126
  • [44] Real-Time Event Classification in Power System With Renewables Using Kernel Density Estimation and Deep Neural Network
    Yadav, Ravi
    Raj, Shristi
    Pradhan, Ashok Kumar
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (06) : 6849 - 6859
  • [45] Real-time Multi-Human Tracking using a Probability Hypothesis Density Filter and multiple detectors
    Eiselein, V.
    Arp, D.
    Paetzold, M.
    Sikora, T.
    2012 IEEE NINTH INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL-BASED SURVEILLANCE (AVSS), 2012, : 325 - 330
  • [46] Parallel Appearance-Adaptive Models for Real-Time Object Tracking Using Particle Swarm Optimization
    Rymut, Boguslaw
    Kwolek, Bogdan
    COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, PT II: THIRD INTERNATIONAL CONFERENCE, ICCCI 2011, 2011, 6923 : 455 - 464
  • [47] Real-time myocardial landmark tracking for MRI-guided cardiac radio-ablation using Gaussian Processes
    Huttinga, Niek R. F.
    Akdag, Osman
    Fast, Martin F.
    Verhoeff, Joost J. C.
    Hoesein, Firdaus A. A. Mohamed
    van den Berg, Cornelis A. T.
    Sbrizzi, Alessandro
    Mandija, Stefano
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (14):
  • [48] Real-time Data-driven Gait Phase Detection using Infinite Gaussian Mixture Model and Parallel Particle Filter
    Papavasileiou, Ioannis
    Zhang, Wenlong
    Han, Song
    2016 IEEE FIRST INTERNATIONAL CONFERENCE ON CONNECTED HEALTH: APPLICATIONS, SYSTEMS AND ENGINEERING TECHNOLOGIES (CHASE), 2016, : 302 - 311
  • [49] Real-time tumor tracking in B-mode images using respiratory signal and deformed liver models
    Hwang, Youngkyoo
    Oh, Young-Taek
    Kim, Jung-Bae
    Bang, Won-Chul
    Lee, Heesae
    Kim, James D. K.
    Kim, ChangYeong
    MEDICAL IMAGING 2013: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2013, 8671
  • [50] Using 3D Models for Real-Time Facial Feature Tracking, Pose Estimation, and Expression Monitoring
    Caunce, Angela
    Cootes, Tim
    COMPUTER VISION - ECCV 2012, PT III, 2012, 7585 : 651 - 654