Asymptotics for p-value based threshold estimation in regression settings

被引:9
|
作者
Mallik, Atul [1 ]
Banerjee, Moulinath [1 ]
Sen, Bodhisattva [2 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
来源
基金
美国国家科学基金会;
关键词
Baseline value; change-point; integral of a transformed Gaussian process; least squares; nonparametric estimation; stump function; CHANGE-POINT ESTIMATION; NONPARAMETRIC REGRESSION; DEPENDENT ERRORS; INFERENCE; BEHAVIOR; DENSITY; BOOTSTRAP; VARIANCE; MODELS;
D O I
10.1214/13-EJS845
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the large sample behavior of a p-value based procedure for estimating the threshold level at which a regression function takes off from its baseline value - a problem a rising in environmental statistics, engineering and other related fields. The estimate is constructed via fitting a "stump" function to approximate p-values obtained from tests for deviation of the regression function from its baseline level. The smoothness of the regression function in the vicinity of the threshold determines the rate of convergence: a "cusp" of order k at the threshold yields an optimal convergence rate of n(-1/(2k+1)), n being the number of sampled covariates. We show that the asymptotic distribution of the normalized estimate of the threshold, for both i.i.d. and short range dependent errors, is the minimizer of an integrated and transformed Gaussian process. We study the finite sample behavior of confidence intervals obtained through the asymptotic approximation using simulations, consider extensions to short-range dependent data, and apply our inference procedure to two real data sets.
引用
收藏
页码:2477 / 2515
页数:39
相关论文
共 50 条
  • [41] P-value based visualization of codon usage data
    Meinicke, Peter
    Brodag, Thomas
    Fricke, Wolfgang Florian
    Waack, Stephan
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2006, 1 (1)
  • [42] Advances in p-Value Based Multiple Test Procedures
    Tamhane, Ajit C.
    Gou, Jiangtao
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2018, 28 (01) : 10 - 27
  • [43] Generalized Fiducial Inference for Threshold Estimation in Dose–Response and Regression Settings
    Seungyong Hwang
    Randy C. S. Lai
    Thomas C. M. Lee
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 109 - 124
  • [44] Selecting the best regression equation via the P-value of F-test
    Zhang, J
    Wang, XR
    METRIKA, 1997, 46 (01) : 33 - 40
  • [45] p-Value adjustment to control type I errors in linear regression models
    Moiseev, Nikita A.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (09) : 1701 - 1711
  • [46] That confounded P-value revisited
    Stang, Andreas
    Rothman, Kenneth J.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2011, 64 (09) : 1047 - 1048
  • [47] What is the P-value anyway?
    Gale, R. P.
    Zhang, M-J
    BONE MARROW TRANSPLANTATION, 2016, 51 (11) : 1439 - 1440
  • [48] On P-value Combination Procedures
    Zhen Meng
    Yuke Shi
    Jinyi Lin
    Qizhai Li
    Acta Mathematica Sinica,English Series, 2025, (02) : 569 - 587
  • [49] Proper use of the p-value
    不详
    SCIENCE, 2016, 351 (6278) : 1121 - 1121
  • [50] Normalization and Gene p-Value Estimation: Issues in Microarray Data Processing
    Fundel, Katrin
    Kueffner, Robert
    Aigner, Thomas
    Zimmer, Ralf
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2008, 2 : 291 - 305