Pointwise error estimation and adaptivity for the finite element method using fundamental solutions

被引:8
|
作者
Grätsch, T
Hartmann, F
机构
[1] Univ Kassel, Dept Civil Engn, D-34109 Kassel, Germany
[2] MIT, Dept Engn Mech, Cambridge, MA 02139 USA
关键词
pointwise error estimation; goal-oriented error estimation; dual problem; Green's function; fundamental solution;
D O I
10.1007/s00466-005-0711-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a goal-oriented a posteriori error estimation technique for the pointwise error of finite element approximations using fundamental solutions. The approach is based on an integral representation of the pointwise quantity of interest using the corresponding Green's function, which is decomposed into an unknown regular part and a fundamental solution. Since only the regular part must be approximated with finite elements, very accurate results are obtained. The approach also allows the derivation of error bounds for the pointwise quantity, which are expressed in terms of the primal problem and the regular part problem. The presented technique is applied to linear elastic test problems in two-dimensions, but it can be applied to any linear problem for which fundamental solutions exist.
引用
收藏
页码:394 / 407
页数:14
相关论文
共 50 条
  • [31] Error estimation and adaptivity in explicit nonlinear finite element simulation of quasi-static problems
    Mathisen, KM
    Hopperstad, OS
    Okstad, KM
    Berstad, T
    COMPUTERS & STRUCTURES, 1999, 72 (4-5) : 627 - 644
  • [32] Error estimation and adaptivity in explicit nonlinear finite element simulation of quasi-static problems
    Mathisen, Kjell M.
    Hopperstad, Odd S.
    Okstad, Knut M.
    Berstad, Torodd
    Computers and Structures, 72 (04): : 627 - 644
  • [33] Remarks on a posteriori error estimation for inaccurate finite element solutions
    Hackbusch, W
    Wappler, JU
    COMPUTING, 1998, 60 (02) : 175 - 191
  • [34] Remarks on a posteriori error estimation for inaccurate finite element solutions
    W. Hackbusch
    J. U. Wappler
    Computing, 1998, 60 : 175 - 191
  • [35] Remarks on a posteriori error estimation for inaccurate finite element solutions
    Hackbusch, W.
    Wappler, J.U.
    1998, Springer-Verlag Wien, Wien, Austria (60):
  • [36] A combined approach for goal-oriented error estimation and adaptivity using operator-customized finite element wavelets
    Sudarshan, R.
    Amaratunga, K.
    Graetsch, T.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 66 (06) : 1002 - 1035
  • [37] The method of fundamental solutions for pointwise source reconstruction
    de Faria, Jairo Rocha
    Lesnic, Daniel
    Lima, Romulo da Silva
    Machado, Thiago Jose
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 114 : 171 - 179
  • [38] Optimal adaptivity for the SUPG finite element method
    Erath, Christoph
    Praetorius, Dirk
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 353 : 308 - 327
  • [39] Calculation verification: Pointwise estimation of solutions and their method-associated numerical error
    Smitherman, David Palmer
    Kamm, James R.
    Brock, Jerry S.
    Journal of Aerospace Computing, Information and Communication, 2007, 4 (03): : 676 - 692
  • [40] Approximative Green's Functions on Surfaces and Pointwise Error Estimates for the Finite Element Method
    Kroener, Heiko
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (01) : 51 - 64