COMPRESSIBLE DIRECT NUMERICAL SIMULATION OF LOW-PRESSURE TURBINES: PART I - METHODOLOGY

被引:0
|
作者
Sandberg, Richard D. [1 ]
Pichler, Richard [1 ]
Chen, Liwei [1 ]
Johnstone, Roderick [1 ]
Michelassi, Vittorio [2 ]
机构
[1] Univ Southampton, Fac Engn & Environm, Aerodynam & Flight Mech Res Grp, Southampton SO17 1BJ, Hants, England
[2] GE Global Res, Aerothermal Syst, D-85748 Garching, Germany
关键词
LARGE-EDDY SIMULATION; SEPARATION-BUBBLES; BOUNDARY-CONDITION; HEAT-TRANSFER; FLOW; CASCADE; TRANSITION; DNS; COMPUTATION; EQUATIONS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Modern low pressure turbines (LPT) feature high pressure ratios and moderate Mach and Reynolds numbers, increasing the possibility of laminar boundary-layer separation on the blades. Upstream disturbances including background turbulence and incoming wakes have a profound effect on the behavior of separation bubbles and the type/location of laminar-turbulent transition and therefore need to be considered in LPT design. URANS are often found inadequate to resolve the complex wake dynamics and impact of these environmental parameters on the boundary layers and may not drive the design to the best aerodynamic efficiency. LES can partly improve the accuracy, but has difficulties in predicting boundary layer transition and capturing the delay of laminar separation with varying inlet turbulence levels. Direct Numerical Simulation (DNS) is able to overcome these limitations but has to date been considered too computationally expensive. Here a novel compressible DNS code is presented and validated, promising to make DNS practical for LPT studies. Also, the sensitivity of wake loss coefficient with respect to freest ream turbulence levels below 1% is discussed.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Direct numerical simulation of compressible turbulent flows
    Li, Xin-Liang
    Fu, De-Xun
    Ma, Yan-Wen
    Liang, Xian
    ACTA MECHANICA SINICA, 2010, 26 (06) : 795 - 806
  • [32] Direct numerical simulation of compressible turbulent flows
    XinLiang LiDeXun FuYanWen MaXian Liang LHDInstitute of MechanicsChinese Academy of Sciences BeijingChina LNMInstitute of MechanicsChinese Academy of Sciences BeijingChina
    Acta Mechanica Sinica, 2010, 26 (06) : 795 - 806
  • [33] Direct numerical simulation of compressible isotropic turbulence
    Li, Xinliang
    Fu, Dexun
    Ma, Yanwen
    Science in China, Series A: Mathematics, Physics, Astronomy, 2002, 45 (11):
  • [34] Numerical simulation of the plasma parameters of a low-pressure arc discharge in helium
    Fedoseev, A., V
    Demin, N. A.
    Sakhapov, S. Z.
    Zaikovskii, A., V
    Smovzh, D., V
    3RD ALL-RUSSIAN SCIENTIFIC CONFERENCE THERMOPHYSICS AND PHYSICAL HYDRODYNAMICS WITH THE SCHOOL FOR YOUNG SCIENTISTS, 2018, 1128
  • [35] Direct numerical simulation of compressible isotropic turbulence
    李新亮
    傅德薰
    马延文
    ScienceinChina,SerA., 2002, Ser.A.2002 (11) : 1452 - 1460
  • [36] Direct numerical simulation of compressible isotropic turbulence
    Li, XL
    Fu, DX
    Ma, YW
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2002, 45 (11): : 1452 - 1460
  • [37] Numerical simulation of flow field in low-pressure turbine exhaust hood
    Du, Zhanbo
    Zhang, Di
    Sun, Bi
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2000, 34 (03): : 36 - 39
  • [38] Direct numerical simulation of compressible turbulent flows
    Xin-Liang Li·De-Xun Fu·Yan-Wen Ma·Xian Liang LHD
    Acta Mechanica Sinica, 2010, (06) : 795 - 806
  • [39] Numerical Simulation of Low-Pressure Drop Static Mixers for Mixing Enhancement
    Tariq, Syed Muhammad
    Mushtaq, Asim
    Ullah, Ahmed
    Qamar, Rizwan Ahmed
    Ali, Zaeem Uddin
    Hassan, Muhammad
    Ahmed, Uzair
    Alam, Syed Sarfaraz
    Sadiq, Mariyam
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2022, 41 (09): : 3141 - 3167
  • [40] Forced Response of a Low-Pressure Turbine Blade using Spectral/hp Element Method: Direct Numerical Simulation
    Wacks, Daniel H.
    Nakhchi, M. E.
    Rahmati, M.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (01): : 135 - 147