Bestvina's normal form complex and the homology of Garside groups

被引:33
|
作者
Charney, R
Meier, J
Whittlesey, K
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
[2] Lafayette Coll, Dept Math, Easton, PA 18042 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Artin groups; duality groups; Garside groups;
D O I
10.1023/B:GEOM.0000024696.69357.73
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Garside group is a group admitting a finite lattice generating set D. Using techniques developed by Bestvina for Artin groups of finite type, we construct K(pi,1)s for Garside groups. This construction shows that the (co)homology of any Garside group G is easily computed given the lattice D, and there is a simple sufficient condition that implies G is a duality group. The universal covers of these K(pi,1)s enjoy Bestvina's weak nonpositive curvature condition. Under a certain tameness condition, this implies that every solvable subgroup of G is virtually Abelian.
引用
收藏
页码:171 / 188
页数:18
相关论文
共 50 条
  • [21] Yersinia enterocolitica 16S rRNA gene types belong to the same genospecies but form three homology groups
    Neubauer, H
    Aleksic, S
    Hensel, A
    Finke, EJ
    Meyer, H
    INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2000, 290 (01) : 61 - 64
  • [22] Homology groups in CR-warped products of complex space forms
    Li, Yanlin
    Ali, Akram
    Alluhaibi, Nadia
    Mofarreh, Fatemah
    Ozel, Cenap
    HELIYON, 2024, 10 (17)
  • [23] NORMAL REFLECTION SUBGROUPS OF COMPLEX REFLECTION GROUPS
    Arreche, Carlos E.
    Williams, Nathan F.
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2023, 22 (02) : 879 - 917
  • [24] Real normal operators and Williamson's normal form
    Bhat, B. V. Rajarama
    John, Tiju Cherian
    ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (3-5): : 507 - 518
  • [25] Real normal operators and Williamson’s normal form
    B. V. Rajarama Bhat
    Tiju Cherian John
    Acta Scientiarum Mathematicarum, 2019, 85 : 507 - 518
  • [26] Computation of the simplest normal form of a resonant double Hopf bifurcation system with the complex normal form method
    Wang, Wei
    Zhang, Qi-Chang
    NONLINEAR DYNAMICS, 2009, 57 (1-2) : 219 - 229
  • [27] Computation of the simplest normal form of a resonant double Hopf bifurcation system with the complex normal form method
    Wei Wang
    Qi-Chang Zhang
    Nonlinear Dynamics, 2009, 57 : 219 - 229
  • [28] Amending Maxwell's Equations for Real and Complex Gauge Groups in Non-Abelian Form
    Rauscher, Elizabeth A.
    Amoroso, Richard L.
    SEARCH FOR FUNDAMENTAL THEORY, 2010, 1316 : 180 - 184
  • [29] Anote on Vishik's normal form
    Castro, Matheus M.
    Martins, Ricardo M.
    Novaes, Douglas D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 281 : 442 - 458
  • [30] On the expressiveness of Levesque's normal form
    Liu, Yongmei
    Lakemeyer, Gerard
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2008, 31 (259-272): : 259 - 272