Independent Control of the Chirality and Polarity for the Magnetic Vortex in Symmetric Nanodot Pairs

被引:2
|
作者
Li, Junqin [1 ,2 ]
Wang, Yong [1 ,2 ]
Zhao, Zilong [1 ,2 ]
Cao, Jiefeng [1 ,2 ]
Zhu, Fangyuan [1 ,2 ]
Tai, Renzhong [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetization reversal;
D O I
10.1109/TMAG.2020.3004537
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We studied the vortex states during the magnetization process for nanomagnetic dot pairs in different geometries, including a series of dual regular polygons with 4-16 sides and irregular shape dot pairs. All geometries demonstrated independent control of the vortex chirality and polarity and could be accomplished by adjusting the in-plane magnetic field direction. To achieve chirality and polarity control, both shape anisotropy and coupling interaction play a vital role. For the regular polygons, the effect of shape anisotropy wanes as the number of side increases, and the coupled interaction is enhanced relatively. According to the results, and combined with those for dual-circle and dual-rectangular magnetic disks, we state the principle for the geometry of the disk to achieve independent control of the chirality and polarity.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] MFM probe control of magnetic vortex chirality in elliptical Co nanoparticles
    Mironov, V. L.
    Gribkov, B. A.
    Fraerman, A. A.
    Gusev, S. A.
    Vdovichev, S. N.
    Karetnikova, I. R.
    Nefedov, I. M.
    Shereshevsky, I. A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 312 (01) : 153 - 157
  • [22] Control of magnetic vortex chirality and polarization in indented and notched nanomagnetic disks
    El-Mezeini, Ahmed M.
    Flack, Tim J.
    Welland, Mark E.
    MATERIALS RESEARCH EXPRESS, 2014, 1 (04):
  • [23] Vortex chirality control in magnetic submicron dots with asymmetrical magnetic properties in lateral direction
    Zhong, Zhiyong
    Zhang, Huaiwu
    Tang, Xiaoli
    Jing, Yulan
    Jia, Lijun
    Liu, Shuang
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (15) : 2345 - 2349
  • [24] Simultaneous measurement of magnetic vortex polarity and chirality using scanning electron microscopy with polarization analysis (SEMPA)
    Chung, S. -H.
    Pierce, D. T.
    Unguris, J.
    ULTRAMICROSCOPY, 2010, 110 (03) : 177 - 181
  • [25] Electrical Detection of Magnetic Vortex Chirality
    Tanabe, Kenji
    Chiba, Daichi
    Ono, Teruo
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (07) : 0780011 - 0780012
  • [26] Control of magnetic vortex polarity by the phase difference between voltage signals
    Cui, Huanqing
    Cai, Li
    Yang, Xiaokuo
    Wang, Sen
    Zhang, Mingliang
    Li, Cheng
    Feng, Chaowen
    APPLIED PHYSICS LETTERS, 2018, 112 (09)
  • [27] Control of vortex chirality in polygonal nanomagnets
    Miyata, M.
    Yakata, S.
    Hara, M.
    Wada, H.
    Kimura, T.
    TENCON 2010: 2010 IEEE REGION 10 CONFERENCE, 2010, : 1878 - 1880
  • [28] Nutation Excitations in the Gyrotropic Vortex Dynamics in a Circular Magnetic Nanodot
    Gareeva, Zukhra
    Guslienko, Konstantin
    NANOMATERIALS, 2023, 13 (03)
  • [29] Probing the Anharmonicity of the Potential Well for a Magnetic Vortex Core in a Nanodot
    Sukhostavets, O. V.
    Pigeau, B.
    Sangiao, S.
    de Loubens, G.
    Naletov, V. V.
    Klein, O.
    Mitsuzuka, K.
    Andrieu, S.
    Montaigne, F.
    Guslienko, K. Y.
    PHYSICAL REVIEW LETTERS, 2013, 111 (24)
  • [30] Vortex-in-nanodot potentials in thin circular magnetic dots
    Wysin, G. M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (37)