An Electromagnetic Frequency Increased Vibration Energy Harvester

被引:1
|
作者
Ashraf, Khalid [1 ]
Khir, Mohd Haris Md [2 ]
Dennis, John Ojur
机构
[1] Univ Teknol PETRONAS, Dept Elect & Elect Engn, Tronoh 31750, Perak, Malaysia
[2] Univ Teknol PETRONAS, DeptFundamental & Appl Sci, Tronoh 31750, Perak, Malaysia
来源
关键词
Energy harvesting; Frequency up-conversion; Impact driven energy scavenging; Power MEMS;
D O I
10.4028/www.scientific.net/AMR.403-408.4231
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an impact-based frequency increased electromagnetic vibration energy harvester to scavenge energy in a low frequency environment. To realize the novel impact based frequency up-conversion mechanism, a coil has been elastically anchored with a platform on which four permanent magnets are arranged in such a way that a strong closed magnetic flux path, linking the coil, is formed. The proposed scavenger has two dynamics of motion. The first phase is a low frequency oscillation to absorb energy from ambient vibration during which both the coil and magnet act as proof mass and move collectively. The increased proof mass ensures maximization of absorbed energy. After crossing a certain clearance, the platform containing magnetic setup rigidly and supporting the coil elastically, collides with a rigid stopper and bounces back. As a result of this mechanical impact a high frequency oscillation is setup in the coil relative to the magnets during which energy is transferred to electrical domain by electromagnetic induction. A macro-prototype has been build to prove the proposed concept. Initial test results show that the proposed harvester generates a peak voltage of 1 volt across a load of 220 Omega at an excitation frequency of 5 Hz which corresponds to a peak power of 4.5 mW and average power of 660 mu W.
引用
收藏
页码:4231 / +
页数:2
相关论文
共 50 条
  • [41] Effect of Electromagnetic Damping on the Optimum Load Resistance of an Electromagnetic Vibration Energy Harvester
    Foong, Faruq Muhammad
    Thein, Chung Ket
    Aziz, Abdul Rashid Abdul
    2018 2ND INTERNATIONAL CONFERENCE ON SMART GRID AND SMART CITIES (ICSGSC 2018), 2018, : 127 - 132
  • [42] Temperature dependence of a magnetically levitated electromagnetic vibration energy harvester
    Pancharoen, K.
    Zhu, D.
    Beeby, S. P.
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 256 : 1 - 11
  • [43] Wireless sensor system powered by an electromagnetic vibration energy harvester
    Beeby, S. P.
    Torah, R. N.
    Tudor, M. J.
    O'Donnell, T.
    Roy, S.
    MEASUREMENT & CONTROL, 2008, 41 (04): : 109 - 113
  • [44] Nonlinear Electromagnetic Vibration Energy Harvester With Closed Magnetic Circuit
    Sun, Shi
    Dai, Xuhan
    Wang, Kai
    Xiang, Xiaojian
    Ding, Guifu
    Zhao, Xiaolin
    IEEE MAGNETICS LETTERS, 2018, 9
  • [45] Electromagnetic human vibration energy harvester comprising planar coils
    Jo, S. E.
    Kim, M. S.
    Kim, Y. J.
    ELECTRONICS LETTERS, 2012, 48 (14) : 874 - U102
  • [46] A diamagnetically stabilized horizontally levitated electromagnetic vibration energy harvester
    Palagummi, S.
    Zou, J.
    Yuan, F. G.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2015, 2015, 9431
  • [47] Validation of a hybrid electromagnetic-piezoelectric vibration energy harvester
    Edwards, Bryn
    Hu, Patrick A.
    Aw, Kean C.
    SMART MATERIALS AND STRUCTURES, 2016, 25 (05)
  • [48] An Unevenly Distributed Planar Coil In Electromagnetic Vibration Energy Harvester
    Liu, Xianchao
    Peng, Han
    Gao, Kai
    Wang, Shaojing
    Xu, Peng
    2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2022,
  • [49] Design and Optimization of a Tubular Linear Electromagnetic Vibration Energy Harvester
    Tang, Xiudong
    Lin, Teng
    Zuo, Lei
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2014, 19 (02) : 615 - 622
  • [50] Coupled Analysis of Electromagnetic Vibration Energy Harvester With Nonlinear Oscillation
    Sato, Takahiro
    Watanabe, Kota
    Igarashi, Hajime
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 313 - 316